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1-D Fiber-Optics – A Soliton 
Playground:

� (a) Multimode Step-
Index Fiber

� (b) Multimode 
Graded-Index Fiber

� (c) Single-mode Step-
Index Fiber

SOLITONS!



1-D Fiber-Optics – A Soliton 
Playground:

� No intermodal dispersion

(narrow core � only one path is allowed)

� Crossectional area ~ 10-6 cm2 

� d ~ 11 � m (on the order of 10 wavelengths)

� Just like John Scott Russell's Canal...



1-D Fiber-Optics – A Soliton 
Playground:



Solitons in Fiber-Optics – Why?

� Data transfer capabilities

- copper telephone wires ~ 2 dozen conversations

- mid-1980's pair of fibers ~12,000 conversations

(equivalent to ~ 9 television channels)

- early 1990's solitons in fibers ~ 70 TV channels 

(transmission rate of 4 Gb/s)

� Increase transmission rate, and distance between 
repeater stations

Statistics from: Hecht, Optics, (Addison-Wesley, New York, 1998) 



Solitons in Fiber-Optics - Why?

� Repeater Station distance determined by power 
loss:

� minimum � = 0.16 dB/km for fused silica fibers

� Repeater Station when power drops by ~10-5

� L ~ 300 km

    (L ~ 1 km for ordinary wire systems)
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Solitons in Fiber-Optics - Why?

� Soliton generation made possible by:

Nonlinear index of refraction

“Negative” group velocity dispersion
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Solitons in Fiber-Optics - Why?

� Note: region of negative 
dispersion includes region 
of minimum loss

� Operate with 

� � 1.5 � m

(near IR in EM spectrum)

� �  0.16 dB/km

�
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Solitons in Fiber-Optics - How?

� Continuous wave will experience “self-phase 
modulation” due to nonlinear portion of index of 
refraction and length of fiber traversed:

� ��� 2 �
� L n2 I



Solitons in Fiber-Optics - How?

� Self-Phase Modulation Effects:

leading edge frequencies lowered

trailing edge frequencies raised

� “Negative” Group Velocity Dispersion Effects:

leading lowered frequencies slow down

trailing raised frequencies speed up

� �  “Pulse Narrowing”

What happens to a pulse of light?



Solitons in Fiber-Optics – The Math

� In order to proceed from this qualitative concept 
of “Pulse Narrowing” we need Math

� �  The Nonlinear Schrödinger Connection



Nonlinear Schrödinger Equation

� Assume light pulse can be expressed as:

M: monochromatic term

 u: envelope function of distance along fiber and time

� Envelope function satisfies:

                                 where:
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Nonlinear Schrödinger Equation

� Perform the transformation

� Obtain NLS in dimensionless form:
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The N=1 Soliton Solution to NLS

� From initial data

� Passes through the fiber unchanged

� Exact balance of dispersion and self-modulated 
pulse narrowing
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The N = 2 Soliton Solution to NLS

� From initial data:

� Periodic with period �/2

� Envelope function:

  

� Intensity (plotted above – what we see)
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The N > 2 Soliton Solution to NLS

� From initial data

� Periodic with 
period �/2

� Complicated 
Envelope functions
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Fiber Experimental Setup

� Pass a sech2 shaped pulse through optical fiber: 

� Measure resulting pulse

(Using autocorrelation)

L � soliton period
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Fiber Experimental Setup

� Half-Period 
Fiber Output:



Fiber Experimental Results

� Dispersion Dominated, N=1 balance, N=2 half-period behavior, N=3 behavior

N=2 
half-period

N=3 
half-period



Autocorrelation Example:

� Intensity Profile I(t): � Autocorrelation 
Profile A( �):
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Soliton Laser - How?



Soliton Laser Results

� Pulse In � Pulse Out

�   N = 2 Soliton Behavior
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Questions?


