[Bouncing Ball](#page-63-0) System

Christine Lind

[Introduction](#page-2-0)

[Experiments](#page-17-0) & Simulations

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

[Extras](#page-47-0)

Bouncing Ball System AMATH 575 Final Project

Christine Lind

Department of Applied Mathematics University of Washington

June 2, 2005

Outline

[Introduction](#page-2-0)

[System Description](#page-2-0) [Exact System](#page-10-0) [High Bounce Approximation](#page-13-0)

[Experiments](#page-17-0) & Simulations

[Speaker Experiment](#page-18-0) [Bouncing Ball Program](#page-21-0) [Matlab Simulations](#page-24-0)

[Comparisons](#page-32-0)

["Standard" Map](#page-33-0) [Bifurcation](#page-38-0) [Strange Attractor](#page-41-0)

[Conclusions](#page-42-0)

[Extras](#page-47-0)

[Bouncing Ball](#page-0-0) System

Christine Lind

[Introduction](#page-2-0)

[Experiments](#page-17-0) & **Simulations**

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

Simple Physical System

Interaction between:

- \blacktriangleright Ball
- \blacktriangleright Sinusoidally Oscillating Table

[Bouncing Ball](#page-0-0) System

Christine Lind

[Introduction](#page-2-0)

[System Description](#page-2-0) [Exact System](#page-10-0) High Bounce [Approximation](#page-13-0)

[Experiments](#page-17-0) & Simulations

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

Initial Assumptions:

 (x_k, t_k) - ball position and time of k^{th} impact

 \blacktriangleright Between Impacts, ball obeys Newton's Laws:

$$
x(t) = x_k + v_k(t-t_k) - \frac{g}{2}(t-t_k)^2 \qquad t_k \leq t \leq t_{k+1}
$$

 \blacktriangleright Table is unaffected by impacts:

$$
s(t) = A(\sin(\omega t + \theta_0) + 1)
$$

Christine Lind

[Introduction](#page-2-0)

[System Description](#page-2-0) [Exact System](#page-10-0) High Bounce [Approximation](#page-13-0)

[Experiments](#page-17-0) & Simulations

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

Solve for Next Impact Time

 $d(t) = x(t) - s(t)$ - distance between ball and table

First $t > t_k$ where $d(t) = 0$ is t_{k+1} , next impact time!

$$
0 = d(t_{k+1}) = x_k + v_k(t_{k+1} - t_k) - \frac{g}{2}(t_{k+1} - t_k)^2
$$

- $A(\sin(\omega t_{k+1} + \theta_0) + 1)$

 \blacktriangleright Note that at time t_k :

$$
x_k = s(t_k) = A(\sin(\omega t_k + \theta_0) + 1)
$$

[Bouncing Ball](#page-0-0) **System**

Christine Lind

[Introduction](#page-2-0)

[System Description](#page-2-0) [Exact System](#page-10-0) High Bounce [Approximation](#page-13-0)

[Experiments](#page-17-0) & Simulations

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

Solve for Next Impact Time

 $d(t) = x(t) - s(t)$ - distance between ball and table

 \blacktriangleright Then the (Implicit) Time-Equation is:

$$
0 = A\sin(\omega t_k + \theta_0) + v_k(t_{k+1} - t_k) - \frac{g}{2}(t_{k+1} - t_k)^2
$$

- $A\sin(\omega t_{k+1} + \theta_0)$

- \blacktriangleright Note that v_k is still unknown
- \blacktriangleright Find Velocity-Equation

[Bouncing Ball](#page-0-0) **System**

Christine Lind

[Introduction](#page-2-0)

[System Description](#page-2-0) [Exact System](#page-10-0) High Bounce [Approximation](#page-13-0)

[Experiments](#page-17-0) & Simulations

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

Solve for Impact Velocity

First look at two different frames of reference (a) Ground (Lab) Frame of Reference:

- \triangleright v_k ball velocity at impact k
- \blacktriangleright u_k table velocity at impact k
- (b) Table Frame of Reference:
	- $\triangleright \overline{v}_k = v_k u_k$ ball velocity at impact k

[Bouncing Ball](#page-0-0) **System**

Christine Lind

[Introduction](#page-2-0)

[System Description](#page-2-0) [Exact System](#page-10-0) High Bounce [Approximation](#page-13-0)

[Experiments](#page-17-0) & Simulations

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

Solve for Impact Velocity

- \overline{v}'_k velocity just before impact k
- \overline{v}_k velocity just after impact k
- α coefficient of restitution (describes damping)

$$
\blacktriangleright \overline{v}_k = -\alpha \overline{v}'_k
$$

- \blacktriangleright 0 $\lt\alpha$ \lt 1
	- $\sim \alpha = 1$ no energy loss (no damping elastic collision)
- Transform back to Ground (Lab) Reference Frame...

[Bouncing Ball](#page-0-0) **System**

Christine Lind

[Introduction](#page-2-0)

[System Description](#page-2-0) [Exact System](#page-10-0) High Bounce [Approximation](#page-13-0)

[Experiments](#page-17-0) & Simulations

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

Solve for Impact Velocity

$$
v_{k+1}=(1+\alpha)u_{k+1}-\alpha v'_{k+1}
$$

Recall that for $t_k \leq t \leq t_{k+1}$ the ball position is described by:

$$
x(t) = x_k + v_k(t - t_k) - \frac{g}{2}(t - t_k)^2
$$

$$
v'_{k+1} = x'(t_{k+1}) = v_k - g(t_{k+1} - t_k)
$$

 \blacktriangleright The table position is given by:

$$
s(t) = A(\sin(\omega t + \theta_0) + 1)
$$

$$
u_{k+1} = s(t_{k+1}) = A\omega \cos(\omega t_{k+1} + \theta_0)
$$

 \blacktriangleright Then we can solve for the Impact Velocity

[Bouncing Ball](#page-0-0) **System**

Christine Lind

[Introduction](#page-2-0)

[System Description](#page-2-0) [Exact System](#page-10-0) High Bounce [Approximation](#page-13-0)

[Experiments](#page-17-0) & Simulations

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

[Bouncing Ball](#page-0-0) System

Christine Lind

[Introduction](#page-2-0)

[System Description](#page-2-0) [Exact System](#page-10-0) High Bounce [Approximation](#page-13-0)

[Experiments](#page-17-0) & Simulations

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

[Extras](#page-47-0)

Solve for Impact Velocity

 \blacktriangleright Impact Velocity Equation:

$$
v_{k+1} = (1+\alpha)A\omega \cos(\omega t_{k+1} + \theta_0)
$$

- $\alpha (v_k - g(t_{k+1} - t_k))$

System is described by

 \blacktriangleright Time Equation:

$$
0 = A \sin(\omega t_k + \theta_0) + v_k(t_{k+1} - t_k)
$$

- $\frac{g}{2}(t_{k+1} - t_k)^2 - A \sin(\omega t_{k+1} + \theta_0)$

 \blacktriangleright Velocity Equation:

$$
v_{k+1} = (1+\alpha)A\omega \cos(\omega t_{k+1} + \theta_0)
$$

- $\alpha (v_k - g(t_{k+1} - t_k))$

[Bouncing Ball](#page-0-0) System

Christine Lind

[Introduction](#page-2-0)

[System Description](#page-2-0) [Exact System](#page-10-0) High Bounce [Approximation](#page-13-0)

[Experiments](#page-17-0) & Simulations

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

Non-Dimensionalization!

Too many parameters to study the system efficiently Parameters - α , A , ω , g

 \blacktriangleright Transform system into dimensionless variables:

$$
\begin{array}{rcl}\n\theta_k & = & \omega t_k + \theta_0 \\
\nu_k & = & \frac{2\omega}{g} v_k\n\end{array}
$$

 \blacktriangleright New Parameter

$$
\beta = \frac{2\omega^2(1+\alpha)A}{g}
$$

[Bouncing Ball](#page-0-0) **System**

Christine Lind

[Introduction](#page-2-0)

[System Description](#page-2-0) [Exact System](#page-10-0) High Bounce [Approximation](#page-13-0)

[Experiments](#page-17-0) & Simulations

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

Dimensionless System is described by

 \blacktriangleright Phase Equation:

$$
0 = \beta (\sin \theta_k - \sin \theta_{k+1})
$$

+
$$
(1 + \alpha) (\nu_k (\theta_{k+1} - \theta_k) - (\theta_{k+1} - \theta_k)^2)
$$

 \blacktriangleright Velocity Equation:

$$
\nu_{k+1} = \beta \cos \theta_{k+1} - \alpha (\nu_k - 2(\theta_{k+1} - \theta_k))
$$

 \blacktriangleright Now we can study the system simply by varying α and β.

[Bouncing Ball](#page-0-0) System

Christine Lind

[Introduction](#page-2-0)

[System Description](#page-2-0) [Exact System](#page-10-0) High Bounce [Approximation](#page-13-0)

[Experiments](#page-17-0) & **Simulations**

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

Dimensionless System is described by

 \blacktriangleright Phase Equation:

$$
0 = \beta (\sin \theta_k - \sin \theta_{k+1})
$$

+
$$
(1 + \alpha) (\nu_k (\theta_{k+1} - \theta_k) - (\theta_{k+1} - \theta_k)^2)
$$

 \blacktriangleright Velocity Equation:

$$
\nu_{k+1} = \beta \cos \theta_{k+1} - \alpha (\nu_k - 2(\theta_{k+1} - \theta_k))
$$

 \triangleright Implicit Maps can be hard to analyze & simulate \Rightarrow make an approximation that will give us an Explicit Map...

[Bouncing Ball](#page-0-0) **System**

Christine Lind

[Introduction](#page-2-0)

[System Description](#page-2-0) [Exact System](#page-10-0) High Bounce [Approximation](#page-13-0)

[Experiments](#page-17-0) & Simulations

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

Bouncing Ball Approximation

High Bounce Approximation

Assume:

change in table height \ll maximum height of the ball

 \blacktriangleright Ball orbit symmetric about the maximum height:

$$
x_k = x_{k+1} \qquad v'_{k+1} = -v_k
$$

Christine Lind

[Introduction](#page-2-0)

[System Description](#page-2-0) [Exact System](#page-10-0) High Bounce [Approximation](#page-13-0)

[Experiments](#page-17-0) & Simulations

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

Bouncing Ball Approximation

High Bounce Approximation

$$
v'_{k+1} = -v_k
$$

 \blacktriangleright Recall:

$$
v'_{k+1} = v_k - g(t_{k+1} - t_k) = -v_k
$$

 \blacktriangleright Explicit Time Map:

$$
t_{k+1}=t_k+\frac{2}{g}v_k
$$

 \triangleright Use equation above to solve for the velocity map, and non-dimensionalize...

[Bouncing Ball](#page-0-0) System

Christine Lind

[Introduction](#page-2-0)

[System Description](#page-2-0) [Exact System](#page-10-0) High Bounce [Approximation](#page-13-0)

[Experiments](#page-17-0) & Simulations

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

Bouncing Ball Approximation

High Bounce Equations

 \blacktriangleright Phase Equation:

$$
\theta_{k+1} = \theta_k + \nu_k \qquad \text{(mod } 2\pi\text{)}
$$

 \blacktriangleright Velocity Equation:

$$
\nu_{k+1} = \alpha \nu_k + \beta \cos(\theta_k + \nu_k)
$$

For $\alpha = 1$, this is the "Standard" Map!

[Bouncing Ball](#page-0-0) System

Christine Lind

[Introduction](#page-2-0)

[System Description](#page-2-0) [Exact System](#page-10-0) High Bounce [Approximation](#page-13-0)

[Experiments](#page-17-0) & Simulations

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

Outline

[Introduction](#page-2-0) [System Description](#page-2-0) [Exact System](#page-10-0) [High Bounce Approximation](#page-13-0)

[Experiments](#page-17-0) & Simulations

[Speaker Experiment](#page-18-0) [Bouncing Ball Program](#page-21-0) [Matlab Simulations](#page-24-0)

[Comparisons](#page-32-0)

["Standard" Map](#page-33-0) **[Bifurcation](#page-38-0)** [Strange Attractor](#page-41-0)

[Conclusions](#page-42-0)

[Extras](#page-47-0)

[Bouncing Ball](#page-0-0) **System**

Christine Lind

[Introduction](#page-2-0)

[Experiments](#page-17-0) & Simulations

[Speaker Experiment](#page-18-0) [Bouncing Ball](#page-21-0) Program [Matlab Simulations](#page-24-0)

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

Bouncing Ball Experiment

Speakers and Function Generators

The physical system can be explored using a setup similar to the schematic shown below.

[Bouncing Ball](#page-0-0) **System**

Christine Lind

[Introduction](#page-2-0)

[Experiments](#page-17-0) & Simulations

[Speaker Experiment](#page-18-0) [Bouncing Ball](#page-21-0) Program [Matlab Simulations](#page-24-0)

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

Bouncing Ball Experiment

Experimental Set-up

Nicholas B. Tufillaro's experimental set-up at Bryn Mawr College (circa 1985).

[Bouncing Ball](#page-0-0) System

Christine Lind

[Introduction](#page-2-0)

[Experiments](#page-17-0) & Simulations

[Speaker Experiment](#page-18-0) [Bouncing Ball](#page-21-0) Program [Matlab Simulations](#page-24-0)

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

Bouncing Ball Experiment

Experimental Results

Nicholas B. Tufillaro's experimental results, [\(see references\)](#page-46-0)

[Bouncing Ball](#page-0-0) System

Christine Lind

[Introduction](#page-2-0)

[Experiments](#page-17-0) & Simulations

[Speaker Experiment](#page-18-0) [Bouncing Ball](#page-21-0) Program [Matlab Simulations](#page-24-0)

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

Bouncing Ball Simulation Program

Nicholas B. Tufillaro wrote a program called Bouncing Ball for the Apple Macintosh. Bouncing Ball simulates experiments by numerically solving the exact equations for the system.

(You can download this program from his website)

▶ Bisection Method used (NOT Newton's Method) because of ease of coding and stability

[Bouncing Ball](#page-0-0) **System**

Christine Lind

[Introduction](#page-2-0)

[Experiments](#page-17-0) & Simulations

[Speaker Experiment](#page-18-0) [Bouncing Ball](#page-21-0) Program [Matlab Simulations](#page-24-0)

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

Bouncing Ball Program

Bouncing Ball Simulations

default settings show four different windows:

- \blacktriangleright Trajectory
- \blacktriangleright Impact Data
- \blacktriangleright Animation
- \blacktriangleright Impact Map

[Bouncing Ball](#page-0-0) System

Christine Lind

[Introduction](#page-2-0)

[Experiments](#page-17-0) & Simulations

[Speaker Experiment](#page-18-0) [Bouncing Ball](#page-21-0) Program [Matlab Simulations](#page-24-0)

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

Bouncing Ball Program

Bouncing Ball Simulations

Program can also plot

- \blacktriangleright Bifurcation Diagrams
- \triangleright Basins of Attraction for periodic points of period 1,2,3,4,8
- \blacktriangleright ...and play sounds at impact events hear chaos!

[Bouncing Ball](#page-0-0) System

Christine Lind

[Introduction](#page-2-0)

[Experiments](#page-17-0) & Simulations

[Speaker Experiment](#page-18-0) [Bouncing Ball](#page-21-0) Program [Matlab Simulations](#page-24-0)

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

Matlab Simulations

It is easy to iterate the High Bounce Approximation, or "Standard" Map in Matlab. Initial conditions propagated in the following Matlab figures are shown below:

[Bouncing Ball](#page-0-0) System

Christine Lind

[Introduction](#page-2-0)

[Experiments](#page-17-0) & Simulations

[Speaker Experiment](#page-18-0) [Bouncing Ball](#page-21-0) Program [Matlab Simulations](#page-24-0)

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

Matlab Simulations - High Bounce Approximation Recall that the map in question is given by:

$$
\theta_{k+1} = \theta_k + \nu_k \qquad \text{(mod } 2\pi\text{)}
$$

$$
\nu_{k+1} = \alpha \nu_k + \beta \cos(\theta_k + \nu_k)
$$

This map has fixed points (θ, ν) :

$$
\blacktriangleright \left(\pm \arccos\left(\frac{2k\pi(1-\alpha)}{\beta}\right), 2k\pi\right)
$$

 \triangleright for integer values of k

[Bouncing Ball](#page-0-0) **System**

Christine Lind

[Introduction](#page-2-0)

[Experiments](#page-17-0) & Simulations

[Speaker Experiment](#page-18-0) [Bouncing Ball](#page-21-0) Program [Matlab Simulations](#page-24-0)

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

[Bouncing Ball](#page-0-0) **System**

Christine Lind

[Introduction](#page-2-0)

[Experiments](#page-17-0) & Simulations

[Speaker Experiment](#page-18-0) [Bouncing Ball](#page-21-0) Program [Matlab Simulations](#page-24-0)

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

[Extras](#page-47-0)

Matlab Simulations - High Bounce Approximation For $\alpha = 1$ we get exactly the "Standard" Map, and

$$
\theta_{k+1} = \theta_k + \nu_k \qquad \text{(mod } 2\pi\text{)}
$$

$$
\nu_{k+1} = \nu_k + \beta \cos(\theta_k + \nu_k)
$$

fixed points (θ, ν) :

- \blacktriangleright $\left(\frac{\pi}{2}\right)$ $\left(\frac{\pi}{2}, 2k\pi\right) \qquad \left(\frac{3\pi}{2}, 2k\pi\right)$
- \triangleright for integer values of k

High Bounce Approximation - $\alpha = 1$, $\beta = 1$ (This is the [Standard Map\)](#page-50-0)

[Bouncing Ball](#page-0-0) System

Christine Lind

[Introduction](#page-2-0)

[Experiments](#page-17-0) & Simulations

[Speaker Experiment](#page-18-0) [Bouncing Ball](#page-21-0) Program [Matlab Simulations](#page-24-0)

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

High Bounce Approximation

What will happen as we turn on the dissipation in the system?

- \blacktriangleright Center at $\left(\frac{\pi}{2}\right)$ $(\frac{\pi}{2},0)$ becomes Stable
- \blacktriangleright Centers at $\left(\frac{\pi}{2}\right)$ $(\frac{\pi}{2}, 2k\pi)$ shift and become Stable (for α not "too small")

[Bouncing Ball](#page-0-0) **System**

Christine Lind

[Introduction](#page-2-0)

[Experiments](#page-17-0) & Simulations

[Speaker Experiment](#page-18-0) [Bouncing Ball](#page-21-0) Program [Matlab Simulations](#page-24-0)

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

Christine Lind High Bounce Approximation - $\alpha = .999, \ \beta = 1$ **[Introduction](#page-2-0)** [Experiments](#page-17-0) & Simulations [Speaker Experiment](#page-18-0) [Bouncing Ball](#page-21-0) "Standard" Map with «=0.999, β =1 Program $10 -$ [Matlab Simulations](#page-24-0) **[Comparisons](#page-32-0)** [Conclusions](#page-42-0) [Extras](#page-47-0) \mathbf{s}^{c} -2 ₂₅ $\overline{3}$ $\overline{5}$ 2 6 θ_n

[Bouncing Ball](#page-0-0) System

High Bounce Approximation - $\alpha = .99$, $\beta = 1$ [Introduction](#page-2-0) [Experiments](#page-17-0) & Simulations [Speaker Experiment](#page-18-0) [Bouncing Ball](#page-21-0) "Standard" Map with α =0.99, β =1 Program \mathbf{a} [Matlab Simulations](#page-24-0) **[Comparisons](#page-32-0)** [Conclusions](#page-42-0) [Extras](#page-47-0) ç. \overline{z} $\overline{\mathbf{3}}$ $\overline{5}$ ×

[Bouncing Ball](#page-0-0) System Christine Lind

 θ_n

[Bouncing Ball](#page-0-0) System

Christine Lind

[Introduction](#page-2-0)

[Experiments](#page-17-0) & Simulations

[Speaker Experiment](#page-18-0) [Bouncing Ball](#page-21-0) Program [Matlab Simulations](#page-24-0)

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

[Extras](#page-47-0)

High Bounce Approximation - $\alpha = .9$, $\beta = 1$

Outline

[Introduction](#page-2-0)

[System Description](#page-2-0) [Exact System](#page-10-0) [High Bounce Approximation](#page-13-0)

[Experiments & Simulations](#page-17-0) [Speaker Experiment](#page-18-0) [Bouncing Ball Program](#page-21-0) [Matlab Simulations](#page-24-0)

[Comparisons](#page-32-0)

["Standard" Map](#page-33-0) [Bifurcation](#page-38-0) [Strange Attractor](#page-41-0)

[Conclusions](#page-42-0)

[Extras](#page-47-0)

[Bouncing Ball](#page-0-0) **System**

Christine Lind

[Introduction](#page-2-0)

[Experiments](#page-17-0) & Simulations

[Comparisons](#page-32-0)

["Standard" Map](#page-33-0) [Bifurcation](#page-38-0) [Strange Attractor](#page-41-0)

[Conclusions](#page-42-0)

Visually compare Standard Map $\alpha = 1$, $\beta = 1$ to Bouncing Ball Simulation with

•
$$
f = 60
$$
 Hz $A = 0.00172563$ $\alpha = 1$
\n• $\beta = \frac{2\omega^2(1+\alpha)A}{g} = \frac{2(2\pi * 60)^2(1+1) * 0.00172563}{981} \approx 1$

Then compare the Matlab Simulation with $\alpha = 0.9$, $\beta = 1$ with Bouncing Ball and

•
$$
f = 60
$$
 Hz $A = 0.00181645$ $\alpha = 0.9$
\n• $\beta = \frac{2\omega^2(1+\alpha)A}{g} = \frac{2(2\pi * 60)^2(1+0.9) * 0.00181645}{981} \approx 1$

[Bouncing Ball](#page-0-0) **System**

Christine Lind

[Introduction](#page-2-0)

[Experiments](#page-17-0) & **Simulations**

[Comparisons](#page-32-0)

["Standard" Map](#page-33-0) **[Bifurcation](#page-38-0)** [Strange Attractor](#page-41-0)

[Conclusions](#page-42-0)

High Bounce - Exact System Comparison $\alpha = 1, \beta = 1$

[Bouncing Ball](#page-0-0) System

Christine Lind

[Introduction](#page-2-0)

[Experiments](#page-17-0) & **Simulations**

[Comparisons](#page-32-0) ["Standard" Map](#page-33-0) **[Bifurcation](#page-38-0)** [Strange Attractor](#page-41-0)

[Conclusions](#page-42-0)

[Bouncing Ball](#page-0-0) System

Christine Lind

[Introduction](#page-2-0)

[Experiments](#page-17-0) & **Simulations**

[Comparisons](#page-32-0) ["Standard" Map](#page-33-0) **[Bifurcation](#page-38-0)** [Strange Attractor](#page-41-0)

[Conclusions](#page-42-0)

[Extras](#page-47-0)

High Bounce - Exact System Comparison $\alpha = 0.9$, $\beta = 1$

Exact System Basin of Attraction $\alpha = 0.9$, $\beta = 1$

blue points get stuck to the table

 \triangleright High Bounce Approx. is invertible \Rightarrow cannot capture this behavior

[Bouncing Ball](#page-0-0) System

Christine Lind

[Introduction](#page-2-0)

[Experiments](#page-17-0) & Simulations

[Comparisons](#page-32-0) ["Standard" Map](#page-33-0) **[Bifurcation](#page-38-0)**

[Strange Attractor](#page-41-0)

[Conclusions](#page-42-0)

High Bounce - Exact System Comparison

High Bounce Approx. also cannot describe situations where the ball rests on the table, but eventually leaves the table again - "Sticking Solutions"

[Bouncing Ball](#page-0-0) System

Christine Lind

[Introduction](#page-2-0)

[Experiments](#page-17-0) & Simulations

[Comparisons](#page-32-0) ["Standard" Map](#page-33-0) **[Bifurcation](#page-38-0)** [Strange Attractor](#page-41-0)

[Conclusions](#page-42-0)

Bifurcation

Exact System exhibits the classic "Period-Doubling" route to chaos for $\alpha = 0.5$:

[Bouncing Ball](#page-0-0) System

Christine Lind

[Introduction](#page-2-0)

[Experiments](#page-17-0) & Simulations

[Comparisons](#page-32-0) ["Standard" Map](#page-33-0) **[Bifurcation](#page-38-0)** [Strange Attractor](#page-41-0)

[Conclusions](#page-42-0)

Bifurcation

High Bounce Approx. reproduces "Period-Doubling" route to chaos for $\alpha = 0.5$

[Bouncing Ball](#page-0-0) System

Christine Lind

[Introduction](#page-2-0)

[Experiments](#page-17-0) & Simulations

[Comparisons](#page-32-0) ["Standard" Map](#page-33-0) **[Bifurcation](#page-38-0)** [Strange Attractor](#page-41-0)

[Conclusions](#page-42-0)

Bifurcation

High Bounce Approx. reproduces "Period-Doubling" route to chaos for $\alpha = 0.5$

[Bouncing Ball](#page-0-0) System

Christine Lind

[Introduction](#page-2-0)

[Experiments](#page-17-0) & Simulations

[Comparisons](#page-32-0) ["Standard" Map](#page-33-0) **[Bifurcation](#page-38-0)** [Strange Attractor](#page-41-0)

[Conclusions](#page-42-0)

Strange Attractor

Both models are shown for $\alpha = 0.5$, $\beta = 5.5$

[Bouncing Ball](#page-0-0) System

Christine Lind

[Introduction](#page-2-0)

[Experiments](#page-17-0) & **Simulations**

[Comparisons](#page-32-0) ["Standard" Map](#page-33-0) [Bifurcation](#page-38-0) [Strange Attractor](#page-41-0)

[Conclusions](#page-42-0)

Outline

[Introduction](#page-2-0)

[System Description](#page-2-0) [Exact System](#page-10-0) [High Bounce Approximation](#page-13-0)

[Experiments & Simulations](#page-17-0) [Speaker Experiment](#page-18-0) [Bouncing Ball Program](#page-21-0) [Matlab Simulations](#page-24-0)

[Comparisons](#page-32-0)

["Standard" Map](#page-33-0) **[Bifurcation](#page-38-0)** [Strange Attractor](#page-41-0)

[Conclusions](#page-42-0)

[Extras](#page-47-0)

[Bouncing Ball](#page-0-0) System

Christine Lind

[Introduction](#page-2-0)

[Experiments](#page-17-0) & Simulations

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

Bouncing Ball System Conclusions

Simple Physical system \Rightarrow Chaos

Interaction between:

- \blacktriangleright Ball
- \blacktriangleright Sinusoidally Oscillating Table

Leads to chaotic behavior for certain parameter values

 \triangleright [Experimental set-up can allow physical measurement of](#page-63-1) [Feigenbaum's constant](#page-63-1)

Christine Lind

[Introduction](#page-2-0)

[Experiments](#page-17-0) & **Simulations**

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

Bouncing Ball System Conclusions

[Bouncing Ball](#page-0-0) **System**

Christine Lind

[Introduction](#page-2-0)

[Experiments](#page-17-0) & Simulations

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

[Extras](#page-47-0)

High Bounce - Exact System Comparison

Models have good qualitative agreement overall

- \blacktriangleright Exact System
	- \blacktriangleright Implicit Equations Hard to Solve/Simulate
	- \triangleright Can describe "sticking solutions" (not invertible)
- \blacktriangleright High Bounce Approximation
	- \blacktriangleright Explicit Equations Easy to Solve/Simulate
	- \triangleright Invertible \Rightarrow cannot describe "sticking solutions"
	- \triangleright Can describe non-physical situations (ball below table)

Bouncing Ball System

[Bouncing Ball](#page-0-0) System

Christine Lind

[Introduction](#page-2-0)

[Experiments](#page-17-0) & Simulations

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

[Extras](#page-47-0)

Questions?

Bouncing Ball System - References

- S. Wiggins. Introduction to Applied Nonlinear Dynamical Systems and Chaos - 2nd Ed. Springer-Verlag, 2003.
- A.B. Tufillaro, T. Abbott, and J. Reilly. An Experimental Approach to Nonlinear Dynamics and Chaos, Addison Wesley, 1992.
- **T. M. Mello and N. B. Tufillaro. Strange attractors of a** bouncing ball, American Journal of Physics, 55 (4), 316 (1987).
	- N. B. Tufillaro and A. M. Albano. Chaotic dynamics of a bouncing ball, American Journal of Physics, 54 (10), 939 (1986).
	- \triangleright N.B. Tufillaro's Website (Contains more references) http://www.drchaos.net/drchaos/bb.html

[Bouncing Ball](#page-0-0) **System**

Christine Lind

[Introduction](#page-2-0)

[Experiments](#page-17-0) & Simulations

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

Outline

[Introduction](#page-2-0)

[System Description](#page-2-0) [Exact System](#page-10-0) [High Bounce Approximation](#page-13-0)

[Experiments & Simulations](#page-17-0) [Speaker Experiment](#page-18-0) [Bouncing Ball Program](#page-21-0) [Matlab Simulations](#page-24-0)

[Comparisons](#page-32-0)

["Standard" Map](#page-33-0) **[Bifurcation](#page-38-0)** [Strange Attractor](#page-41-0)

[Conclusions](#page-42-0)

[Extras](#page-47-0)

[Bouncing Ball](#page-0-0) System

Christine Lind

[Introduction](#page-2-0)

[Experiments](#page-17-0) & Simulations

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

[Bouncing Ball](#page-0-0) System

s.

"Standard Map" with «=1, 8=1 $10 \ddot{\mathbf{0}}$ <u> Liberaturan</u> \overline{z} **TRANSACTION** \bullet \overline{c} \mathbf{a} 5 ĥ. 4 θ_c

[Bouncing Ball](#page-0-0) System

Christine Lind

[Introduction](#page-2-0)

[Experiments](#page-17-0) & Simulations

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

Standard Map

[Bouncing Ball](#page-0-0) System

Christine Lind

[Introduction](#page-2-0)

[Experiments](#page-17-0) & Simulations

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

[Bouncing Ball](#page-0-0) System

[Introduction](#page-2-0)

[Experiments](#page-17-0) & Simulations

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

[Bouncing Ball](#page-0-0) System

Christine Lind

[Introduction](#page-2-0)

[Experiments](#page-17-0) & Simulations

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

[Bouncing Ball](#page-0-0) System

[Introduction](#page-2-0)

[Experiments](#page-17-0) & Simulations

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

[Bouncing Ball](#page-0-0) System

[Introduction](#page-2-0)

[Experiments](#page-17-0) & **Simulations**

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

[Bouncing Ball](#page-0-0) System

[Introduction](#page-2-0) 回回 [Experiments](#page-17-0) & Simulations **[Comparisons](#page-32-0) [Conclusions](#page-42-0)** [Extras](#page-47-0)

[Bouncing Ball](#page-0-0) System

Bifurcation Diagram for θ_{α} , v_{α} for varying β , α =0.5 $6 5⁺$ e^c 3 \overline{z} 'n, $\circ_0^\mathbb{L}$ 0.002 0.004 0.006 0.008 0.01 0.012 Table Amplitude (cm) 8 $6¹$ Δ $\overline{}$ 5^c -8 \mathbf{r} 0.002 0.004 0.006 0.008 0.01 0.012 Table Amplitude (cm)

[Bouncing Ball](#page-0-0) System

Christine Lind

[Introduction](#page-2-0)

[Experiments](#page-17-0) & Simulations

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

[Bouncing Ball](#page-0-0) System Christine Lind

[Bouncing Ball](#page-0-0) System

[Bouncing Ball](#page-0-0) System

[Bouncing Ball](#page-0-0) System

[Introduction](#page-2-0)

[Experiments](#page-17-0) & Simulations

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)

Feigenbaum's Delta

$$
\delta = \lim_{n \to \infty} \frac{\lambda_n - \lambda_{n-1}}{\lambda_{n+1} - \lambda_n} = 4.669202
$$

 λ is the value of A for which bifurcation occurs:

►
$$
A_1 = \lambda_1 = 0.0106
$$
, $A_2 = \lambda_2 = 0.0115$,
\n► $A_3 = \lambda_3 = 0.0117$
\n $\delta \approx \frac{0.0115 - 0.0106}{0.0117 - 0.0115} = 4.5$

[Bouncing Ball](#page-0-0) System

Christine Lind

[Introduction](#page-2-0)

[Experiments](#page-17-0) & Simulations

[Comparisons](#page-32-0)

[Conclusions](#page-42-0)