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Abstract A simple chemical kinetic model is developed which describes the behavior of small ligands that can
bind reversibly with large carrier molecules with slower intrinsic rates of transport. Under certain conditions, which we
describe, the presence of the slower carriers in fact enhances the transport of the ligand. This is the chemical version of
Wyman Murray! s facilitated diffusion. The simple model illuminates the driven nature of the enhancement of the
transport by the carrier molecules: we show that the facilitated transport depends crucially on a!grand canonical"
setting in which the free ligand concentrations are kept constant in the presence of the facilitating protein, in contrast to
a canonical setting with constant total ligand concentrations. Results from the simple model are compared to previous
experimental and theoretical results for Wyman Murray facilitated diffusion of oxygen and carbon monoxide in
muscle. A relation is established between the association dissociation rates and the down stream ligand concentration,
or back pressure for oxygen, required for the facilitation effect to occur.
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Wyman Murray facilitated diffusion of oxygen by hemoglobin
(Hb) or myoglobin (Mb) has long been considered a counterin 
tuitive phenomenon in biophysical chemistry[1]. To further our un 
derstanding of the physico chemical nature of this interesting
and important problem, we study the related problem in a chem 
ical kinetic setting. Although the specific examples that we use
to demonstrate our model are oxygen and carbon monoxide
transport being facilitated by hemoglobin and myoglobin, the
chemical kinetic theory can be applied to a much broader set of
scenarios with facilitated chemical and biochemical transitions.
This mechanism complements the enzyme catalysis mechanism
which assumes that the chemical transition is faster when a sub 
strate is bound to the enzyme[2]. In section 1 we describe the simple
model. Section 2 presents a comparison between our model and
Wittenberg! s experimental results. In section 2.4, a potentially
novel relation required to sustain the facilitation effect is estab 
lished between the association dissociation rates and the down 
stream ligand concentration (i.e., back pressure).
We begin with a brief description of our motivating example.
The role of hemoglobin in enhancing oxygen transport was

postulated as early as 1932 by Roughton[3]. Experiments were de 
signed and executed to measure the facilitation of oxygen trans 
port through cells due to the presence of hemoglobin and myo 
globin during the 1960!s and early 1970!s by Wittenberg, Hem 
mingsen, and Scholander, to name a few[4-7]. Mathematical mod 
els based on reaction diffusion equations were proposed, and

approximate solutions were studied analytically by Murray,
Wyman, Rubinow & Dembo, and numerically by Kreuzer &
Hoofd[8-11]. The theory behind this type of facilitated diffusion
suggests that under certain conditions the flux of a small ligand,
such as oxygen, diffusing in an aqueous solution can be en 
hanced by the presence of a large protein, such as hemoglobin,
to which the ligand binds reversibly and rapidly. However, since
the diffusion coefficient of the protein ligand complex is orders
of magnitude smaller than that of the free ligand, the phe 
nomenon described above seems counterintuitive. To illustrate
the counterintuitive nature of the problem, Wyman[9] asked!How
could a fly hope to increase his rate of progress by alighting on
the back of a tortoise?"It turns out, conceptually, that if a large
gradient in the free ligand concentration is maintained, then the
resulting phenomenological Fick!s flux of the total ligand is sig 
nificantly greater when the carrier molecule is present in the
system, even when the carrier molecule moves very slowly. This
theory is now one of the established mechanisms by which oxy 
gen and carbon monoxide are transported in muscle respiration,
with the role of the facilitating carrier protein being played by
hemoglobin and/or myoglobin[12-14], and has also inspired the mod 
el for the phosphocreatine shuttle[15]. While the reaction diffusion
mathematical models have explained the phenomenon, the focus
of the present work is to describe its physico chemical nature.
Solutions to the reaction diffusion models provide a good

match with the experimental results, but previous mathematical
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Actin polymerization driven stochastic movement of the bacteria Listeria monocytogenes
is often measured using single-particle tracking (SPT) methodology and analyzed in
terms of statistics. Experimental results suggested a dynamic association between the
growing actin filaments and the propelled bacteria. Based on an alternative mathematical
formalism for a Brownian ratchet (BR), we introduce such an attractive interaction into
the one-dimensional BR model and show that its effect is equivalent to an external
resistant force on the bacterium. Such a force significantly reduces the Brownian motion
of a driven bacterium, and accentuates the stepping due to polymerization. We then
consider the growth, with and without a barrier, of a filamentous bundle consisting of
N identical filaments. It is shown that the bundle grows with a similar rate as a single
filament in the absence of a load, but can oppose N times the external force under
the stalling condition. A set of relationships describing the velocity of the bacterium
movement (Vz) and its apparent diffusivity (Dz) as functions of the resistant force (F )
and the number of filaments in a bundle (N) are obtained. The theoretical study suggests
methods for data analysis in future experiments with applied external resistant force.

Keywords: Actin polymerization; Brownian ratchet; molecular motor; stochastic
processes.

1. Introduction

At the cellular level, chemistry and mechanics are two different aspects of the

same macromolecular processes: the former emphasizes states of the system and

their energies while the latter focuses on movements and forces.1 Mechanobiology

is emerging as a systems approach to cell biology that integrates these two tradi-

tionally separated disciplines.2 The growth of filamentous protein polymers, such

as F-actin and microtubules, can do work against molecular or intracellular objects

that resist movement. It has been suggested that these filaments are responsible for
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Presentation Abstract:

1. Introduction
• Motivation:

Actin-Based Motility of Listeria
• BR Model Applied to the Simplest Case:

Single Polymer and Fluctuating Barrier

2. Realistic Feature 1: Attractive Force
• Attractive Force ∼ Resistant Force

3. Realistic Feature 2: N Polymer Bundle
• Without Barrier:

Bundle Grows as Single Polymer
• With Barrier:

Bundle can Oppose N times External Force
(Compared to Single Polymer)
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Motivation: Actin-Based Motility

Listeria Monocytogenes:

http://textbookofbacteriology.net/Listeria 2.html

Bacteria that Causes Listeriosis
Usually Only Flu-Like Symptoms,
CDC Estimates that in the U.S.

• 1,600 People per Year
Become Seriously Ill due to
Listeriosis

• Out of Those, 260 Die
At body temperature:
Listeria is propelled by polymerization of actin filaments.
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Motivation: Actin-Based Motility

Actin-Based Motility of Listeria (Click for Movie)

Figures 16 and 17. (16) Thin section of a portion of the surface of a macrophage infected for 4 h with Listeria. These macrophages were 
fixed in situ in the dish in which they were growing, a, Located at the tip of a projection from the macrophage cell surface is a single 
Listeria and behind it a long, fine, filamentous tail. b, The fine, filamentous tail at higher magnification. Note that the filaments are randomly 
oriented relative to each other, some in transverse section (dots), others in oblique and longitudinal section. (17) Macrophages were infected 
with Listeria for 4 h, then extracted with Triton X-100 and incubated with S1. This section is taken of the same region as Fig. 16. Basal 
to the Listeria at the end of this pseudopod is the fine, filamentous tail whose component filaments are decorated with S1. The small arrow 
indicates the polarity of several decorated filaments. The large arrow indicates residual membrane that has not been solubilized. 
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Figure 23. Stages in the entry, growth, move- 
ment, and spread of Listeria from one macro- 
phage to another. Photographs illustrating all 
these intermediate stages have been presented 
in the figures. 

sperm would be generated (Tilney, 1985). Instead, what we 
find is that the actin filaments in the comet's tail seem to be 
very short and are randomly arranged, yet form a compact 
cluster that does not associate with the rest of the cytoskele- 
ton of the host macrophage. How this completely novel dis- 
tribution of actin filaments is generated will have to occupy 
us in the future. 

From published data in the literature; it is reasonable to 
expect that other intracytoplasmic parasites such as Rickett- 
sia and Shigella may use the host's cytoskeleton for their own 
purposes in ways similar to what we describe for Listeria 
(Ogawa et al., 1968; Pal et al., 1989). However, there are 
probably more intracellular parasites that seem to use en- 
tirely different mechanisms or variations on the mechanisms 
just described to carry out their life cycles on their respective 
hosts (Moulder, 1985; Edelson, 1982). By studying these 
"natural variants" we may be able to rapidly find what assem- 
bled gene products are necessary, a scenario that can help 
us learn a great deal about the cell biology of the host macro- 
phage. 

As with most scientific studies, a number of questions have 
arisen from this one. Many of these questions can be an- 
swered by looking at living cells as Schaechter et al. started 
to do in 1957 and will give us information not only on 
Listeria and its proliferation and for that matter certain intra- 
cellular parasites generally, but also help cell biologists learn 
more about the cell biological processes. 

Particular thanks go to Pat Connelly for cutting the thin sections and taking 
many of the photographs. Her interest and enthusiasm really made this 
project a lot of  fun. We also thank Larry Hale for showing one of us (D. A. 
Portnoy) his unpublished data on the role of  cytochalasin D and intracellu- 
lar spread of ShigeUa. This information helped lead to the present study. 
We also wish to express our profound appreciation to David DeRosier for 
showing us that the actin filaments that give rise to the "comet's tail" and 
the "cloud ~ around the ~'steria must be short. Thanks go to Bob Golder 
for the excellent drawing. Special thanks go to Tom Pollard, our monitor- 

ing editor, and to Susan Craig for their enthusiastic response to our manu- 
script. 
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noy) from the National Institutes of  Health. 
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Motivation: Actin-Based Motility of Listeria

Experimental Observations: Single Particle Tracking

Kuo & McGrath Measured Listeria Trajectory (Red)

Image Source: [Kuo and McGrath, 2000]

1. “Stepping” Behavior

• Step Size: δ
(Monomer Width)

• Suggesting:
Coordinated Growth
of Actin Polymers

2. MSD Smaller than Expected

• (Decreased Fluctuation)
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of Actin Polymers

2. MSD Smaller than Expected

• (Decreased Fluctuation)
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Motivation: Actin-Based Motility of Listeria

Experimental Observations: Single Particle Tracking

Kuo & McGrath Measured Listeria Trajectory (Red)

Image Source: [Kuo and McGrath, 2000]

1. “Stepping” Behavior

• Step Size: δ
(Monomer Width)

• Suggesting:
Coordinated Growth
of Actin Polymers

2. MSD Smaller than Expected

• (Decreased Fluctuation)

Suggest Possible Explanation:

“Binding” between
Listeria and Actin Cloud
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Motivation: Actin-Based Motility

Actin-Based Motility of Listeria

Motivates Study of:

• Polymerization-Driven Motion of a Fluctuating Barrier

Mathematical Framework:

• Diffusion Formalism Brownian Ratchet Model

• Building On Simplest Case:
Single Polymer Ratchet
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Single Polymer Ratchet

What is a Single Polymer Ratchet?

α

β

x

δ

Component 1:
Polymer

• α, β:
Adding/Subtracting Rates

• δ: Monomer Width

• α > β:
Polymer Grows
(On Average)
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Single Polymer Ratchet

What is a Single Polymer Ratchet?

Fext
ηb
,Db

y

Component 2:
Fluctuating Barrier

• Biased Brownian Motion

• Db: Fluctuation

• −Fext
ηb

: Drift
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Single Polymer Ratchet

What is a Single Polymer Ratchet?

α

β

Fext
ηb
,Db

x

δ

y

When Components Interact:

• Barrier Motion
“blocked” by Polymer

• Polymer Growth
“blocked” by Barrier
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Single Polymer Ratchet

What is a Single Polymer Ratchet?

α

β

Fext
ηb
,Db

x

δ

y

When Components Interact:
If Polymerization is Fast:

• Barrier Moves Far Enough

• Polymer Immediately Grows

• Blocking Backward
Fluctuation of Barrier

Barrier is “Ratcheted” Forward
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Single Polymer (No Barrier)

Random Variable X(t): Position of Polymer Tip

∂PX(x ,t)
∂t = αPX(x −∆x , t) + βPX(x + ∆x , t)− (α + β)PX(x , t)

∂PX(x ,t)
∂t = Da

∂2PX(x ,t)
∂x2 − Va

∂PX(x ,t)
∂x

α

β

x

∆x

Discrete Space Model:

• PX(x , t) = Prob{X(t) = x}
• Biased Random Walk

To Obtain Continuous Space
Model:

• Taylor Expand in x . . .



Introduction Attraction Force N Polymer Bundle Conclusions

Single Polymer (No Barrier)

Random Variable X(t): Position of Polymer Tip

∂PX(x ,t)
∂t = αPX(x −∆x , t) + βPX(x + ∆x , t)− (α + β)PX(x , t)

∂PX(x ,t)
∂t = Da

∂2PX(x ,t)
∂x2 − Va

∂PX(x ,t)
∂x

α

β

x

∆x

Continuous Space Model:

• PX(x , t) =
Prob{x < X(t) ≤ x + dx}

• Biased Brownian Motion
(Diffusion with Drift)

Da = lim
∆x→0

(α + β)
∆x2

2
, Va = lim

∆x→0
(α− β)∆x
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Barrier (No Polymer)

Random Variable Y(t): Position of Barrier

∂PY(y ,t)
∂t = Db

∂2PY(y ,t)
∂y2 + Fext

ηb

∂PY(y ,t)
∂y

Fext
ηb
,Db

y

Continuous Space Model:

• PY(y , t) =
Prob{y < Y(t) ≤ y + dy}

• Biased Brownian Motion
(Diffusion with Drift)



Introduction Attraction Force N Polymer Bundle Conclusions

Single Polymer Ratchet

Diffusion Formalism Model: [Qian, 2004]

∂PXY(x , y , t)

∂t
= Da

∂2PXY

∂x2
+ Db

∂2PXY

∂y 2
− Va

∂PXY

∂x
+

Fext

ηb

∂PXY

∂y
(1)

α

β

Fext
ηb
,Db

x

δ

y

Joint pdf :

• PXY(x , t) =
Prob{x < X(t) ≤ x + dx ,

y < Y(t) ≤ y + dy}
• X(t),Y(t) Coupled by

Geometric Constraint:
X(t) ≤ Y(t)
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Single Polymer Ratchet

Diffusion Formalism Model: [Qian, 2004]

∂PXY(x , y , t)

∂t
= Da

∂2PXY

∂x2
+ Db

∂2PXY

∂y 2
− Va

∂PXY

∂x
+

Fext

ηb

∂PXY

∂y
(1)

α

β

Fext
ηb
,Db

x

δ

y

Strategy: Decouple System
Introduce:

• ∆(t): Gap Distance

• Z(t): Average Position

Change of Variables:

• ∆ = Y − X, Z = DbX+DaY
Db+Da
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Single Polymer Ratchet

Diffusion Formalism Model: [Qian, 2004]

∂PXY(x , y , t)

∂t
= Da

∂2PXY

∂x2
+ Db

∂2PXY

∂y 2
− Va

∂PXY

∂x
+

Fext

ηb

∂PXY

∂y
(1)

∂P∆(∆, t)

∂t
= (Da + Db)

∂2P∆

∂∆2
+

(
Va +

Fext

ηb

)
∂P∆

∂∆
, (∆ ≥ 0) (2a)

∂PZ(z , t)

∂t
= Dz

∂2PZ

∂z2
− Vz

∂PZ

∂z
, −∞ < z < +∞ (2b)

Da = (α + β) δ
2

2 , Va = (α− β)δ

Dz = DaDb

Db+Da
, Vz = DbVa−DaFext/ηb

Db+Da

• (1) Constraint: X(t) ≤ Y(t)

• (2a) Constraint: ∆(t) ≥ 0
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Single Polymer Ratchet: Gap Distance

Gap Distance Approaches a Steady State:

∂P∆(∆, t)

∂t
= (Da + Db)

∂2P∆

∂∆2
+

(
Va +

Fext

ηb

)
∂P∆

∂∆
, ∆ ≥ 0

Subject to:

• No-Flux B.C. at ∆ = 0

• Normalization Condition

“+”: Diffusion → Boundary
Conditions: Can’t “Leak Out”

D

PDHD,tL

Gap → Steady State!
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Single Polymer Ratchet: Gap Distance

Gap Distance Approaches a Steady State:

∂P∆(∆, t)

∂t
= (Da + Db)

∂2P∆

∂∆2
+

(
Va +

Fext

ηb

)
∂P∆

∂∆
, ∆ ≥ 0

Subject to:

• No-Flux B.C. at ∆ = 0

• Normalization Condition

“+”: Diffusion → Boundary
Conditions: Can’t “Leak Out”

D

PDHD,tL

D

PDssHDL

Gap → Steady State!
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Single Polymer Ratchet: Gap Distance

P∆ss (∆): Steady State Gap Distance

0 = Dδ
d2P∆ss

d∆2
+ Vδ

dP∆ss

d∆
, ∆ ≥ 0

• Dδ = (Da + Db)

• Vδ =
(
Va + Fext

ηb

)
• No-Flux B.C. at ∆ = 0

• Normalization Condition

Steady State Distribution

• Exponential

P∆ss (∆) = Vδ
Dδ

e
−Vδ∆

Dδ
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Single Polymer Ratchet: Average Position

Average Position: Diffusion with Drift

∂PZ(z , t)

∂t
= Dz

∂2PZ

∂z2
− Vz

∂PZ

∂z
, −∞ < z <∞

Solution:

• PZ(z , t) = 1√
4πDz t

e−
(z−Vz t)2

4Dz t

With:

• Dz = DaDb
Db+Da

, Vz = DbVa−DaFext/ηb
Db+Da

Normal Distribution

• Mean:
µ = Vz t

• Variance:
σ2 = 2Dz t
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Single Polymer Ratchet: Average Position

Average Position: Diffusion with Drift

∂PZ(z , t)

∂t
= Dz

∂2PZ

∂z2
− Vz

∂PZ

∂z
, −∞ < z <∞

Solution:

• PZ(z , t) = 1√
4πDz t

e−
(z−Vz t)2

4Dz t

With:

• Dz = DaDb
Db+Da

, Vz = DbVa−DaFext/ηb
Db+Da

Normal Distribution

• Mean:
µ = Vz t

• Variance:
σ2 = 2Dz t
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Single Polymer Ratchet: Stalling Force

Define the Stalling Force, F ∗:

Value of the External Force that “Stalls” the Drift:

Vz = DbVa−DaFext/ηb
Db+Da

• F ∗ = ηbDb
Va
Da

Qualitatively:

• Fext < F ∗:
Polymer Pushes Barrier
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Single Polymer Ratchet: Stalling Force

Define the Stalling Force, F ∗:

Value of the External Force that “Stalls” the Drift:

Vz = DbVa−DaFext/ηb
Db+Da

• F ∗ = ηbDb
Va
Da

Qualitatively:

• Fext < F ∗:
Polymer Pushes Barrier
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Single Polymer Ratchet

Single Polymer Ratchet Summary

Gap Distance → Steady State:

• Exponential Distribution

• µ = Dδ
Vδ

= Db+Da

Va+Fext/ηb

Average Position → Biased Diffusion

• Normal Distribution

• µ = Vz t

• σ2 = 2Dz t

Stalling Force:

• F ∗ = ηbDb
Va
Da
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Single Polymer Ratchet

Single Polymer Ratchet Summary

Gap Distance → Steady State:

• Exponential Distribution

• µ = Dδ
Vδ

= Db+Da

Va+Fext/ηb

Average Position → Biased Diffusion

• Normal Distribution

• µ = Vz t

• σ2 = 2Dz t

Stalling Force:

• F ∗ = ηbDb
Va
Da

Incorporate Two Realistic Features:

1. Attraction Force
Between Polymer and Barrier
• Suggested by Kuo & McGrath

2. Multiple Polymer Filaments
• Listeria is Propelled by

Network of Actin Filaments
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Internal Attraction Force

Internal Attraction Force, Fint(y − x)

To Represent “Binding” of Polymer to Barrier, Define Fint(y − x):

α

β

Fext
ηb
,Db

x

δ

y

Fint(y−x)
ηb

Fint(y−x)
ηa

• Acts on both
Polymer and Barrier

• Function of
Gap Distance:
∆ = y − x

• Appears in Model:
→ Drift Terms
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Internal Attraction Force

Internal Attraction Force, Fint(y − x)

∂PXY(x , y , t)

∂t
= Da

∂2PXY

∂x2
+ Db

∂2PXY

∂y2

− ∂

∂x

[(
Va +

Fint(y − x)

ηa

)
PXY

]
+

∂

∂y

[
(Fext + Fint(y − x))

ηb
PXY

]
(3)

α

β

x

δ

y

Fint(y−x)
ηb

Fint(y−x)
ηa

Strategy: Decouple via
Change of Variables:

• ∆ = Y − X,
Z = DbX+DaY

Db+Da
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Internal Attraction Force

Internal Attraction Force, Fint(∆)

∂PXY(x , y , t)

∂t
= Da

∂2PXY

∂x2
+ Db

∂2PXY

∂y2

− ∂

∂x

[(
Va +

Fint(y − x)

ηa

)
PXY

]
+

∂

∂y

[
(Fext + Fint(y − x))

ηb
PXY

]
(3)

∂P∆Z(∆, z, t)

∂t
= Dδ

∂2P∆Z

∂∆2
+ Dz

∂2P∆Z

∂z2
+

∂

∂∆
(V1(∆)P∆Z)− ∂

∂z
(V2(∆)P∆Z) (4)

• (3) Constraint: X(t) ≤ Y(t)

• (4) Constraint: ∆(t) ≥ 0
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Internal Attraction Force

Internal Attraction Force, Fint(∆)

∂PXY(x , y , t)

∂t
= Da

∂2PXY

∂x2
+ Db

∂2PXY

∂y2

− ∂

∂x

[(
Va +

Fint(y − x)

ηa

)
PXY

]
+

∂

∂y

[
(Fext + Fint(y − x))

ηb
PXY

]
(3)

∂P∆Z(∆, z, t)

∂t
= Dδ

∂2P∆Z

∂∆2
+ Dz

∂2P∆Z

∂z2
+

∂

∂∆
(V1(∆)P∆Z)− ∂

∂z
(V2(∆)P∆Z) (4)

• (3) Constraint: X(t) ≤ Y(t)

• (4) Constraint: ∆(t) ≥ 0

Gap Dynamics

• Do Not Depend Z

• Gap → Steady State
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Internal Attraction Force: Gap Distance

Steady-State Gap Distribution, P∆ss (∆)

0 = Dδ
d2P∆ss (∆)

d∆2
+

d

d∆
(V1(∆)P∆ss (∆)) , ∆ ≥ 0,

No-Flux B.C. at x = 0
V1(∆) = Vδ +

(
1
ηa

+ 1
ηb

)
Fint(∆)

Dδ = (Da + Db)
Vδ = (Va + Fext/ηb)
N : Normalization Factor
Fint(∆) = −dUint(∆)

d∆
Solution:

P∆ss (∆) = N exp
[
−Vδ∆−(1/ηa+1/ηb)Uint(∆)

Dδ

]
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Internal Attraction Force: Average Position

After the Gap Reaches the Steady State, Average Position:

∫ ∞
0

P∆ss (∆)
∂PZ(z , t)

dt
d∆ =

∫ ∞
0

(
P∆ss (∆)

(
Dz
∂2PZ

∂z2
− ∂

∂z
(V2(∆)PZ)

))
d∆

∂PZ(z , t)

dt
= Dz

∂2PZ

∂z2
− Vz

∂PZ

∂z
−

(
Db
ηa
− Da

ηb

)
Da + Db

∂PZ

∂z

∫ ∞
0

Fint(∆)P∆ss (∆)d∆

Expected Value of the Internal Attraction Force
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Internal Attraction Force: Average Position

After the Gap Reaches the Steady State, Average Position:

∫ ∞
0

P∆ss (∆)
∂PZ(z , t)

dt
d∆ =

∫ ∞
0

(
P∆ss (∆)

(
Dz
∂2PZ

∂z2
− ∂

∂z
(V2(∆)PZ)

))
d∆

∂PZ(z , t)

dt
= Dz

∂2PZ

∂z2
− Vz

∂PZ

∂z
−

(
Db
ηa
− Da

ηb

)
Da + Db

∂PZ

∂z

∫ ∞
0

Fint(∆)P∆ss (∆)d∆

Expected Value of the Internal Attraction Force
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Internal Attraction Force: Average Position

Define Mean Internal Force, F int

F int =

∫ ∞
0

Fint(∆)P∆ss (∆)d∆

Then:

∂PZ(z , t)

dt
= Dz

∂2PZ

∂z2
− Vz

∂PZ

∂z
−

(
Db
ηa
− Da

ηb

)
F int

Da + Db

∂PZ

∂z
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Internal Attraction Force: Average Position

Rigid Polymer Structure:

For Listeria’s Actin Tail, the Polymer Structure is “Rigid,” ηa � ηb

α

β

Fext
ηb
,Db

x

δ

y

Fint(y−x)
ηb

Fint(y−x)
ηa

• Must Apply a Much
Greater Force to
Generate Drift

• ⇒ Fint(y−x)
ηa

� Fint(y−x)
ηb

(Neglect Effect of
Attraction Force on
Polymer Drift)
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Internal Attraction Force: Average Position

Rigid Polymer Structure:

∂PZ(z , t)

dt
= Dz

∂2PZ

∂z2
− Vz

∂PZ

∂z
−

(
Db
ηa
− Da

ηb

)
F int

Da + Db

∂PZ

∂z

Vz =
(DbVa − DaFext/ηb)

Da + Db

If the Polymer Structure is Rigid, ηa >> ηb, F int
ηa
� F int

ηb

∂PZ(z , t)

dt
= Dz

∂2PZ

∂z2
−
(
DbVa − Da

(
Fext + F int

)
/ηb
)

Da + Db

∂PZ

∂z
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Internal Attraction Force: Average Position

Rigid Polymer Structure:

If the Polymer Structure is Rigid, ηa >> ηb, F int
ηa
� F int

ηb

∂PZ(z , t)

dt
= Dz

∂2PZ

∂z2
−
(
DbVa − Da

(
Fext + F int

)
/ηb
)

Da + Db

∂PZ

∂z

Internal Attraction Force ∼ Additional External Resistant Force:

• F = Fext + F int

For the Rest of This Talk!
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Internal Attraction Force: Average Position

Rigid Polymer Structure:

If the Polymer Structure is Rigid, ηa >> ηb, F int
ηa
� F int

ηb

∂PZ(z , t)

dt
= Dz

∂2PZ

∂z2
−
(
DbVa − Da

(
Fext + F int

)
/ηb
)

Da + Db

∂PZ

∂z

Internal Attraction Force ∼ Additional External Resistant Force:

• F = Fext + F int

For the Rest of This Talk!

First Realistic Feature Results:

1. Attraction Force
Between Polymer and Barrier
• Effectively Decreases Vz (Drift)
• No Direct Effect on Dz (Fluctuation)
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N Polymer Ratchet

What is an N Polymer Ratchet?

α

β

Component 1:
Bundle of

N Identical Polymers
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N Polymer Ratchet

What is an N Polymer Ratchet?

Db,F/ηb

Component 2:
Barrier
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N Polymer Ratchet

What is an N Polymer Ratchet?

α

β

Db,F/ηb

When Components
Interact:
Ratchet:

Longest Polymer
+

Barrier
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Introduction
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Modeling an Internal Attraction Force

N Polymer Bundle
N Polymer Bundle (No Barrier)
N Polymer Bundle with a Moving Barrier (Ratchet)

Conclusions
Summary/Future Work
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N Polymer Bundle (No Barrier)

Xi(t): Position of i th Polymer Tip at Time t

∂PXi
(x,t)

∂t = Da
∂2PXi

(x,t)

∂x2 − Va
∂PXi

(x,t)

∂x

α

β

x1 x2 xN

Each Individual Polymer:

• Normal Distribution
µ = Vat, σ2 = 2Dat

• pdf :

fX(x , t) = 1√
4πDat

e−
(x−Vat)2

4Dat

• cdf :
FX(x , t) =

∫ x
−∞ fX(x , t)dx
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N Polymer Bundle (No Barrier)

Xi(t): Position of i th Polymer Tip at Time t

∂PXi
(x,t)

∂t = Da
∂2PXi

(x,t)

∂x2 − Va
∂PXi

(x,t)

∂x

α

β

x1 x2 xN

Each Individual Polymer:

• Normal Distribution
µ = Vat, σ2 = 2Dat

• pdf :

fX(x , t) = 1√
4πDat

e−
(x−Vat)2

4Dat

• cdf :
FX(x , t) =

∫ x
−∞ fX(x , t)dx
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N Polymer Bundle (No Barrier)

Example: 3 Polymers Starting Out Separated:

x1 x2 x3
x

fXiHx,tL
t : 1.

x1 x2 x3
x

fXiHx,tL
t : 25.

(Click for Movie)
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N Polymer Bundle (No Barrier)

X(k)(t): Position of k th Longest Polymer Tip at Time t

α

β

x (N)

x (N−1)

x (1)

Instead of Tracking
Individual Polymers

• Order Them By Length

• Define:
X(k)(t): Position of
kth Longest Polymer:

X(1)(t) ≥ X(2)(t) ≥ ... ≥ X(k−1)(t) ≥ X(k)(t) ≥ X(k+1)(t) ≥ ... ≥ X(N−1)(t) ≥ X(N)(t)
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N Polymer Bundle (No Barrier)

X(k)(t): Position of k th Longest Polymer Tip at Time t

X(1)(t) ≥ X(2)(t) ≥ ... ≥ X(k−1)(t) ≥ X(k)(t) ≥ X(k+1)(t) ≥ ... ≥ X(N−1)(t) ≥ X(N)(t)

X(k)(t): kth Longest Polymer:
Order Statistics:

• pdf :
fX(k)(x , t) = N!

(k−1)!(N−k)!FX(x , t)N−k [1− FX(x , t)]k−1 fX(x , t)

Qualitatively “Biased-Diffusion-Like:”

• Single Traveling Peak

• Increasing Width
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N Polymer Bundle (No Barrier)

Example: 3 Polymers Starting Out Even (Same Length)

xH1LxH2LxH3L x

fXHkLHx,tL
t : 1.

xH1LxH2LxH3L x

fXHkLHx,tL
t : 25.

(Click for Movie)
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N Polymer Bundle (No Barrier)

N Identical Polymers

In the Absence of a Barrier, Bundle “Spreads Out:”

• Distance Between Peaks Increases:
• ∝

√
2Dat

In the Long-Time Limit:

Bundle Grows as a Single Polymer While Others Lag Behind
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N Polymer Ratchet

Joint pdf for all {Xi(t)}, Y(t): f ({xi}, y , t)

∂f ({xi}, y , t)

∂t
=

N∑
k=1

(
Da
∂2f

∂x2
k

− Va
∂f

∂xk

)
+ Db

∂2f

∂2y
+

F

ηb

∂f

∂y
(5)

α

β

Db,F/ηb

x1 x2 xN

y

Strategy: Decouple via
Change of Variables:

• ∆i = Y − Xi ,

Z =
Db
∑N

j=1 Xj+DaY

NDb+Da
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N Polymer Ratchet

Joint pdf for all {∆i(t)}, Y(t): f ({ξi}, z , t)

∂f ({xi}, y , t)

∂t
=

N∑
k=1

(
Da
∂2f

∂x2
k

− Va
∂f

∂xk

)
+ Db

∂2f

∂2y
+

F

ηb

∂f

∂y
(5)

∂φ({ξi}, t)

∂t
=

N∑
i,j

(Daδij + Db)
∂2φ

∂ξi∂ξj
+

(
Va +

F

ηb

) N∑
i=1

∂φ

∂ξi
(6a)

∂PZ(z , t)

∂t
=

DbDa

NDb + Da

∂2PZ

∂z2
−
(
NDbVa − DaF/ηb

NDb + Da

)
∂PZ

∂z
(6b)

f ({xi}, y , t) = f ({ξi}, z , t)
Decoupled:
= φ({ξi}, t)PZ(z , t)

Geometric Constraints:

• For (5): Xi (t) ≤ Y(t)

• For (6a): ∆i (t) ≥ 0
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N Polymer Ratchet: Gap Distance

Gap Distances Approach Steady State:

φ({ξi}) = εN exp

(
−ε

N∑
i=1

ξi

)
, ε =

Va + F/ηb
NDb + Da

, P∆(1)
(x) = Nεe−Nεx

{∆i}: Gaps are Identical,
Exponentially Distributed

• µ = 1
ε = NDb+Da

Va+F/ηb

∆(1) = min{∆i}
Exponentially Distributed

• µ = 1
Nε = Db+Da/N

Va+F/ηb
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N∑
i=1

ξi

)
, ε =

Va + F/ηb
NDb + Da

, P∆(1)
(x) = Nεe−Nεx

{∆i}: Gaps are Identical,
Exponentially Distributed

• µ = 1
ε = NDb+Da

Va+F/ηb

∆(1) = min{∆i}
Exponentially Distributed

• µ = 1
Nε = Db+Da/N

Va+F/ηb



Introduction Attraction Force N Polymer Bundle Conclusions

N Polymer Ratchet: Average Position

Average Position: Diffusion with Drift

∂PZ(z , t)

∂t
= DzN

∂2PZ

∂z2
− VzN

∂PZ

∂z

Solution:

• PZ(z , t) = 1√
4πDzN

t
e
− (z−VzN

t)2

4DzN
t

With:

• DzN = DaDb
NDb+Da

,

VzN = NDbVa−DaF/ηb
NDb+Da

Normal Distribution

• Mean:
µ = VzN t

• Variance:
σ2 = 2DzN t
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N Polymer Ratchet: Average Position

Recall Stalling Force, F ∗N :

Value of the Force that “Stalls” the Drift:

VzN = NDbVa−DaF/ηb
NDb+Da

• F ∗N = NηbDb
Va
Da

Qualitatively:

• F < F ∗N :
Polymer Bundle
Pushes Barrier

Bundle can Oppose N times External Force of a Single Polymer!
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N Polymer Ratchet

N Polymer Ratchet Summary

Min. Gap Distance → Steady State:

• Exponential Distribution

• µ = Db+(Da/N)
Va+F/ηb

Average Position → Biased Diffusion

• Normal Distribution

• µ = VzN t

• σ2 = 2DzN t

Stalling Force:

• F ∗N = NηbDb
Va
Da
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N Polymer Ratchet

N Polymer Ratchet Summary

Min. Gap Distance → Steady State:

• Exponential Distribution

• µ = Db+(Da/N)
Va+F/ηb

Average Position → Biased Diffusion

• Normal Distribution

• µ = VzN t

• σ2 = 2DzN t

Stalling Force:

• F ∗N = NηbDb
Va
Da

Second Realistic Feature Results:

2. Multiple Polymer Filaments:

DzN = Db(Da/N)
Db+(Da/N)

VzN = DbVa−(Da/N)F/ηb
Db+(Da/N)

• Stalling Force Scales with N

• Interaction with Barrier
→ Polymers Grow Together X

Increasing N:

• Decreases Mean Gap Distance

• Increases Vz (Drift)

• Decreases Dz (Fluctuation) X
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Results From the Brownian Ratchet Model

By Incorporating Realistic Features:

Can Predict Observed Listeria Behavior:

• Coordinated Actin Polymerization

• Decreased Fluctuation of the Bacterium (Barrier)

Not just a Model for Listeria. Also:

• Other Actin-Based Motility Scenarios

• Molecular Motor “Pushing” a Barrier (Load) Along its Track
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Future Work

Incorporate More Realistic Features

• Explicit Incorporation of Hydrolysis Cycle

• Interactions Between Filaments in a Bundle

• Capture Discrete “Stepping” Events
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Diffusion Formalism: Single Polymer Ratchet
Full Time-Dependent Gap Distance Solution

Initial Boundary Value Problem for (x ≥ 0, t > 0):

• ∂P∆(x,t)
∂t

= Dδ
∂2P∆
∂x2 + Vδ

∂P∆
∂x

• P∆(x, 0) = δ(x)

• Dδ
∂P∆(0,t)
∂x

+ VδP∆(0, t) = 0

• limx→∞ P∆(x, t) = 0

limx→∞
∂P∆(x,t)
∂x

= 0

Solution Via New Transform Method of Fokas [Fokas, 2002]

P∆(x , t) = Vδ
Dδ

e
− Vδx

Dδ

+e
− Vδx

2Dδ e
−
(

Vδ
Dδ

)2
t

4Dδ

∫ ∞
0

ze
− z2t

4Dδ

(
z cos(zx/2)− Vδ

Dδ
sin(zx/2)

)
dz

π

((
Vδ
Dδ

)2

+ z2

)



k = 1 + 1−erf(ωk)
2

[
N − 1−

√
πωk [1 + erf(ωk)]eω

2
k

]
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