General Exam

Christine Lind

[Introduction](#page-2-0)

[Current Research](#page-12-0)

General Exam Future Research

Modeling Cooperation Between Molecular Motors Polymer Growth Against a Force

Christine Lind

University of Washington Department of Applied Mathematics

February 9, 2006

Outline

[Introduction](#page-2-0)

[Conventional Molecular Motors](#page-4-0) [Polymerization as a Molecular Motor](#page-5-0) [Why Do We Care?](#page-8-0)

[Current Research](#page-12-0)

[Preliminary Model Set-Up](#page-13-0) [Polymer Growth Simulations](#page-31-0) [More Complicated Systems](#page-0-1)

[Future Research](#page-0-1)

[General Exam](#page-0-0)

Christine Lind

[Introduction](#page-2-0)

[Current Research](#page-12-0)

What are Molecular Motors?

Protein molecules in the cell that:

- \blacktriangleright generate force
- \blacktriangleright cause transport

Inage (c) MedicalEngineer.co.uk & V F Murphy 2004

[General Exam](#page-0-0)

Christine Lind

[Introduction](#page-2-0)

Conventional [Molecular Motors](#page-4-0) [Polymerization as a](#page-5-0) Molecular Motor [Why Do We Care?](#page-8-0)

[Current Research](#page-12-0)

Where are Molecular Motors?

[General Exam](#page-0-0)

Christine Lind

[Introduction](#page-2-0)

Conventional [Molecular Motors](#page-4-0) [Polymerization as a](#page-5-0) Molecular Motor [Why Do We Care?](#page-8-0)

[Current Research](#page-12-0)

[Future Research](#page-0-1)

Muscle Cells & Neural Cells

Conventional Molecular Motors

[General Exam](#page-0-0)

Christine Lind

[Introduction](#page-2-0)

Conventional [Molecular Motors](#page-4-0)

[Polymerization as a](#page-5-0) Molecular Motor [Why Do We Care?](#page-8-0)

[Current Research](#page-12-0)

Polymerization as a Motor

Another way to cause motion/transport ▶ POLYMERIZATION-or-DEPOLYMERIZATION ! \blacktriangleright (adding or subtracting monomers) Polymerization \leq \cap \sim monomer dimer Membrane Pole trimer polymer Chromosome

[General Exam](#page-0-0)

Christine Lind

[Introduction](#page-2-0)

Conventional [Molecular Motors](#page-4-0) [Polymerization as a](#page-5-0) Molecular Motor [Why Do We Care?](#page-8-0)

[Current Research](#page-12-0)

Polymerization as a Motor - Biological Examples

Chromosome Transport During Anaphase

[General Exam](#page-0-0)

Christine Lind

[Introduction](#page-2-0)

Conventional [Molecular Motors](#page-4-0) [Polymerization as a](#page-5-0) Molecular Motor [Why Do We Care?](#page-8-0)

[Current Research](#page-12-0)

[Future Research](#page-0-1)

Depolymerization of Spindle Pulls Sister Chromatids Apart:

Polymerization as a Motor - Biological Examples

[General Exam](#page-0-0)

Christine Lind

[Introduction](#page-2-0)

Conventional [Molecular Motors](#page-4-0) [Polymerization as a](#page-5-0) Molecular Motor [Why Do We Care?](#page-8-0)

[Current Research](#page-12-0)

[Future Research](#page-0-1)

Sickle Hemoglobin Polymerization creates Sickle Cells:

Cell Membrane Deformation

Why Do We Care About Molecular Motors?

Molecular Motors are Special Because:

- \triangleright Chemical Energy \Rightarrow Mechanical Energy
	- \triangleright DIRECTLY! (not via heat or electrical energy)
- \blacktriangleright Highly Efficient
	- \triangleright 6 times more efficient than a car
- \triangleright Models for Molecular Motors \Rightarrow Nano-Engineering of Future
	- \triangleright Nano-mechano-chemical Machines
	- ▶ Tiny Robots!

[General Exam](#page-0-0)

Christine Lind

[Introduction](#page-2-0)

Conventional [Molecular Motors](#page-4-0) [Polymerization as a](#page-5-0) Molecular Motor [Why Do We Care?](#page-11-0)

[Current Research](#page-12-0)

Outline

[Introduction](#page-2-0)

[Conventional Molecular Motors](#page-4-0) [Polymerization as a Molecular Motor](#page-5-0) [Why Do We Care?](#page-8-0)

[Current Research](#page-12-0)

[Preliminary Model Set-Up](#page-13-0) [Polymer Growth Simulations](#page-31-0) [More Complicated Systems](#page-0-1)

[Future Research](#page-0-1)

[General Exam](#page-0-0)

Christine Lind

[Introduction](#page-2-0)

[Current Research](#page-12-0)

[Preliminary Model](#page-13-0) Set-Up [Polymer Growth](#page-31-0) **Simulations** [More Complicated](#page-0-1) Systems

How does Polymerization Work?

Rate Constants:

- k_{+} : second order rate constant of adding a monomer
- $k_$: first order rate constant of subtracting a monomer
- c: concentration of monomers in surrounding solution

Position of the end of the polymer can be modeled as a 1-D biased random walk.

[General Exam](#page-0-0)

Christine Lind

[Introduction](#page-2-0)

[Current Research](#page-12-0)

[Preliminary Model](#page-13-0) Set-Up [Polymer Growth](#page-31-0) **Simulations** [More Complicated](#page-0-1) Systems

How does Polymerization Work?

 $P_n(t)$: probability length is *n* at time *t* Differential Equation for Polymer Length:

$$
\frac{dP_n(t)}{dt} = k_+ cP_{n-1}(t) + k_- P_{n+1}(t) - (k_+ c + k_-) P_n(t)
$$

[General Exam](#page-0-0)

Christine Lind

[Introduction](#page-2-0)

[Current Research](#page-12-0)

[Preliminary Model](#page-13-0) Set-Up [Polymer Growth](#page-31-0) **Simulations** [More Complicated](#page-0-1) Systems

How does Polymerization Work?

- \blacktriangleright Deterministic System:
	- \blacktriangleright Motion is continuous in Space, Time
	- \triangleright Initial Condition \Rightarrow one possible trajectory
- ▶ Stochastic System:
	- \triangleright Direction of motion, Time motion occurs Random
	- \triangleright Initial Condition \Rightarrow many possible trajectories

[General Exam](#page-0-0)

Christine Lind

[Introduction](#page-2-0)

[Current Research](#page-12-0)

[Preliminary Model](#page-13-0) Set-Up [Polymer Growth](#page-31-0) **Simulations** [More Complicated](#page-0-1) Systems

Stochastic System: Continuous-Time Random Walk

Number of Events in time t is modeled as a Poisson Process with rate:

$$
\blacktriangleright \lambda = k_+ c + k_-
$$

Times between Events have an Exponential Distribution with rate λ .

Probability of subtracting or adding a monomer:

$$
P(-) = \frac{k_-}{k_- + k_+ c} = \frac{k_-}{\lambda}
$$

$$
P(+) = \frac{k_+ c}{k_- + k_+ c} = \frac{k_+ c}{\lambda}
$$

 \Rightarrow Use this idea to create simulations!

[General Exam](#page-0-0)

Christine Lind

[Introduction](#page-2-0)

[Current Research](#page-12-0)

[Preliminary Model](#page-13-0) Set-Up [Polymer Growth](#page-31-0) **Simulations** [More Complicated](#page-0-1) Systems

Simulation with One Polymer

Polymer Length vs Time k plus*c = 4, k minus = 1, dx = 1, L(0) = 5, tmax = 100 350 Simulation Data Trial 1 300 Simulation Data Trial 2 Simulation Data Trial 3 Simulation Data Trial 4 Simulation Data Trial 5 250 Deterministic Trajectory Polymer Length Polymer Length 200 50 100 50 $0_0^{\prime\prime}$ 0 20 40 60 80 100 Time

[General Exam](#page-0-0)

Christine Lind

[Introduction](#page-2-0)

[Current Research](#page-12-0)

[Preliminary Model](#page-13-0) Set-Up [Polymer Growth](#page-31-0) Simulations [More Complicated](#page-0-1) Systems

Polymer Interacting with a Moving Wall

Let w be the position of the moving wall.

 \triangleright w_+ - rate that the wall moves towards the polymers

 \triangleright w_{$-$} - rate the wall moves away from the polymers Additional Constraint, if $w - x < \Delta x$:

 \blacktriangleright monomer cannot be added.

 \triangleright wall cannot move towards the polymer.

[General Exam](#page-0-0)

Christine Lind

[Introduction](#page-2-0)

[Current Research](#page-12-0)

[Preliminary Model](#page-13-0) Set-Up [Polymer Growth](#page-31-0) **Simulations** [More Complicated](#page-0-1) Systems

Simulation with One Polymer and a Moving Wall

[General Exam](#page-0-0)

Christine Lind

[Introduction](#page-2-0)

[Current Research](#page-12-0)

[Preliminary Model](#page-13-0) Set-Up [Polymer Growth](#page-31-0) Simulations [More Complicated](#page-0-1) Systems

 W_{+}

[General Exam](#page-0-0)

Christine Lind

[Introduction](#page-2-0)

[Current Research](#page-12-0)

[Preliminary Model](#page-13-0) Set-Up [Polymer Growth](#page-31-0) **Simulations** [More Complicated](#page-0-1) Systems

Model the Steady-State Gap Distance

► Discrete Space
$$
\Leftrightarrow
$$
 Random Walk
\n
$$
p_i = \frac{\alpha}{\alpha + \beta} p_{i+1} + \frac{\beta}{\alpha + \beta} p_{i-1} \qquad i > 0
$$
\n
$$
\frac{\beta}{\alpha + \beta} p_0 = \frac{\alpha}{\alpha + \beta} p_1 \qquad \text{(B.C. for i=0)}
$$

► Continuous Space Limit ↔ Brownian Motion
\n
$$
p_t = Dp_{xx} + Vp_x = 0 \t x > 0
$$
\n
$$
Dp_x + Vp = 0 \t (B.C. for x=0)
$$
\n
$$
D = \lim_{\Delta x \to 0} (\alpha + \beta) \frac{(\Delta x)^2}{2} \t V = \lim_{\Delta x \to 0} (\alpha - \beta) \Delta x
$$

[General Exam](#page-0-0)

Christine Lind

[Introduction](#page-2-0)

[Current Research](#page-12-0)

[Preliminary Model](#page-13-0) Set-Up [Polymer Growth](#page-31-0) Simulations [More Complicated](#page-0-1) Systems

Steady-State Gap Distance

^I Discrete Space ⇔ Random Walk $\Rightarrow p_i = \frac{\alpha - \beta}{\alpha}$ $\frac{-\beta}{\alpha}$ $\left(\frac{\beta}{\alpha}\right)$ $\frac{\beta}{\alpha}$ ⁱ

▶ Continuous Space Limit ⇔ Brownian Motion \Rightarrow $p(x) = \frac{V}{D}e^{-\frac{V}{D}x}$

[General Exam](#page-0-0)

Christine Lind

[Introduction](#page-2-0)

[Current Research](#page-12-0)

[Preliminary Model](#page-13-0) Set-Up [Polymer Growth](#page-31-0) **Simulations** [More Complicated](#page-0-1) Systems

Moving Wall Steady State Gap Distance

[General Exam](#page-0-0)

Christine Lind

[Introduction](#page-2-0)

[Current Research](#page-12-0)

[Preliminary Model](#page-13-0) Set-Up [Polymer Growth](#page-31-0) **Simulations** [More Complicated](#page-0-1) Systems

More Complicated Polymer Model

Multiple Polymers Interacting with a Moving Wall

Build upon the basic model and simulations to study a more interesting system:

 \triangleright N Polymers

Gap distances between each polymer and the wall can be modeled as an N-D biased random walk.

 \blacktriangleright Special Case: $N=2$

[General Exam](#page-0-0)

Christine Lind

[Introduction](#page-2-0)

[Current Research](#page-12-0)

[Preliminary Model](#page-13-0) Set-Up [Polymer Growth](#page-31-0) **Simulations** [More Complicated](#page-0-1) Systems

More Complicated Polymer Model

Multiple Polymers Interacting with a Moving Wall

- \blacktriangleright Deterministic System:
	- \triangleright Motion is continuous in Space, Time
	- \triangleright Initial Condition \Rightarrow one possible trajectory
- \blacktriangleright Stochastic System:
	- \triangleright Direction of motion, Time motion occurs Random
	- \triangleright Initial Condition \Rightarrow many possible trajectories

[General Exam](#page-0-0)

Christine Lind

[Introduction](#page-2-0)

[Current Research](#page-12-0)

[Preliminary Model](#page-13-0) Set-Up [Polymer Growth](#page-31-0) **Simulations**

[More Complicated](#page-0-1) Systems

Polymer Growth Simulations

Multiple Polymers Interacting with a Moving Wall

- \blacktriangleright Gillespie-type Algorithm Generates:
	- ▶ Position of each Polymer Tip
	- \triangleright Position of the Moving Wall
- \triangleright Simulations can be used to:
	- \blacktriangleright Investigate the System
	- \blacktriangleright Compare with Theoretical Results

[General Exam](#page-0-0)

Christine Lind

[Introduction](#page-2-0)

[Current Research](#page-12-0)

[Preliminary Model](#page-13-0) Set-Up [Polymer Growth](#page-31-0) **Simulations**

[More Complicated](#page-0-1) Systems

Simulation with Many Polymers

[General Exam](#page-0-0)

Christine Lind

[Introduction](#page-2-0)

[Current Research](#page-12-0)

[Preliminary Model](#page-13-0) [Polymer Growth](#page-31-0) [More Complicated](#page-0-1)

More Complicated Polymer Model

Multiple Polymers Interacting with a Moving Wall

 \blacktriangleright The Polymers are *Identical*:

$$
\begin{array}{ll} & k_{+}c_{p1} = k_{+}c_{p2} = k_{+}c \\ \hline & k_{-p1} = k_{-p2} = k_{-} \end{array}
$$

 \blacktriangleright Polymers do not Explicity Interact

 \blacktriangleright Are the Polymers Independent?

• Independent
$$
\Rightarrow
$$
 $p_i = \frac{\alpha - \beta}{\alpha} \left(\frac{\beta}{\alpha} \right)$

 λ ⁱ

[General Exam](#page-0-0)

Christine Lind

[Introduction](#page-2-0)

[Current Research](#page-12-0)

[Preliminary Model](#page-13-0) Set-Up [Polymer Growth](#page-31-0) **Simulations**

[More Complicated](#page-0-1) Systems

Steady State Gap Distribution for 2-Polymer System

Gap 1 Distance

Steady State Distribution for Gaps 1 & 2 k_plus *c = 4, k_minus = 1, w_plus = 2, w_minus = 1, tmax = 10,000 1 1 Calculated Histogram Expected Independent Distribution: (4/6)(2/6)^x Probability Distribution Probability Distribution $^{\circ}$ 0 2 4 6 8 10 $^{\circ}$ 0 2 4 6 8 10

Gap 2 Distance

[General Exam](#page-0-0)

Christine Lind

[Introduction](#page-2-0)

[Current Research](#page-12-0)

[Preliminary Model](#page-13-0) Set-Up [Polymer Growth](#page-31-0) **Simulations** [More Complicated](#page-0-1) Systems

Polymer Cooperation - 2D Random Walk

Polymer Motion from Wall's POV - Gap Distances Rates of motion are given by:

(Origin represents both polymers touching the wall)

Polymer 1 Dist. from Wall

[General Exam](#page-0-0)

Christine Lind

[Introduction](#page-2-0)

[Current Research](#page-12-0)

[Preliminary Model](#page-13-0) Set-Up [Polymer Growth](#page-31-0) **Simulations**

[More Complicated](#page-0-1) Systems

Polymer Cooperation - 2D Random Walk

$p(x, y, t)$ - gap 1 distance is x, gap 2 distance is y, at time t

 \blacktriangleright PDE for Gap Distance Probability

$$
p_t = D_1 (p_{xx} + p_{yy}) + 2D_2 p_{xy} + V (p_x + p_y)
$$

▶ No-Flux Boundary Conditions:

$$
\blacktriangleright \ \ J_1(0,y) = D_1 p_x + D_2 p_y + V p = 0
$$

$$
\blacktriangleright \ \ J_2(x,0) = D_1 p_y + D_2 p_x + Vp = 0
$$

▶ Solve for Steady-State Solution

Polymer 1 Dist. from Wall

[General Exam](#page-0-0)

Christine Lind

[Introduction](#page-2-0)

[Current Research](#page-12-0)

[Preliminary Model](#page-13-0) Set-Up [Polymer Growth](#page-31-0) **Simulations**

[More Complicated](#page-0-1) Systems

Outline

[General Exam](#page-0-0)

Christine Lind

[Introduction](#page-2-0)

[Current Research](#page-12-0)

[Future Research](#page-0-1)

[Introduction](#page-2-0)

[Conventional Molecular Motors](#page-4-0) [Polymerization as a Molecular Motor](#page-5-0) [Why Do We Care?](#page-8-0)

[Current Research](#page-12-0)

[Preliminary Model Set-Up](#page-13-0) [Polymer Growth Simulations](#page-31-0) [More Complicated Systems](#page-0-1)

Future Research

Research to be Done

- \blacktriangleright Finish analysis of 2-Polymer Model
- ▶ Generalize to N-Polymer Model
	- ► Gap Distances \Rightarrow N+1-D PDE for $p(x_1, x_2, \ldots, x_N, t)$
	- \triangleright N spatial, 1 time
- ▶ Mathematical & Biophysical Analysis of N-Polymer Model
- ▶ Study Density Function for an N-Polymer Model
	- ► Gap Distances \Rightarrow 2-D PDE for $c(x, t)$
	- \blacktriangleright 1 space, 1 time

[General Exam](#page-0-0)

Christine Lind

[Introduction](#page-2-0)

[Current Research](#page-12-0)

Questions?

[General Exam](#page-0-0)

Christine Lind

[Introduction](#page-2-0)

[Current Research](#page-12-0)