# The Brownian Ratchet Revisited: Multiple Filamentous Growth



#### Introduction

The growth of filamentous protein polymers can do work against molecular or intracellular objects that resist movement. The *Brownian ratchet* (**BR**) model was developed to describe such systems [2]. In this work, we use a continuous diffusion formalism for the polymerization of a **BR** instead of the original random-walk approach. For a more details and results, see [1].

# **Diffusion Formalism: One Filament**

• Represent the position of a filament tip,  $\mathbf{X}(t)$ , as a continuous diffusion process where  $\delta$ : the length of a monomer,  $D_a = (\alpha + \beta)\delta^2/2, \qquad V_a = (\alpha - \beta)\delta,$ (1) and  $\alpha$ ,  $\beta$ : polymerization & depolymerization rates. •  $f_{\mathbf{X}}(x, t)$ : probability density function (*pdf*) for the filament tip (2)

$$\frac{\partial f_{\mathbf{X}}(x,t)}{\partial t} = D_a \frac{\partial^2 f_{\mathbf{X}}(x,t)}{\partial x^2} - V_a \frac{\partial f_{\mathbf{X}}(x,t)}{\partial x}$$

• Single filament without a barrier:  $f_{\mathbf{X}}(x,t) = e^{-\frac{(x-V_a t)^2}{4D_a t}} / \sqrt{4\pi D_a t}$ .

•  $f_{\mathbf{X}}(x, t)$ : traveling peak at  $x = V_a t$ , with increasing dispersion.

## Filamentous Bundle: No Barrier

- Let  $\mathbf{X}_i(t)$  (i = 1, 2, ..., N) be N independent, identical filaments • Let  $\mathbf{X}^{(k)}(t)$  be the position of the  $k^{th}$  longest filament, when the filament positions are ordered from longest to shortest:  $\mathbf{X}^{(1)}(t) \ge \ldots \ge \mathbf{X}^{(k-1)}(t) \ge \mathbf{X}^{(k)}(t) \ge \mathbf{X}^{(k+1)}(t) \ge \ldots \ge \mathbf{X}^{(N)}(t).$ • The formula for the *pdf* of the  $k^{th}$  longest filament:
- $f_{\mathbf{X}^{(k)}}(x,t) = \frac{N!}{(k-1)!(N-k)!} F_{\mathbf{X}}(x,t)^{N-k} \left[1 F_{\mathbf{X}}(x,t)\right]^{N-k} \left[1 F_{\mathbf{X}}(x,t)^{N-k}\right]^{N-k} \left[1 F_{\mathbf{X}}(x$
- where  $F_{\mathbf{X}}(x, t)$  is the cumulative distribution function (*cdf*). •  $f_{\mathbf{X}^{(k)}}(x, t)$ : single traveling peak with increasing dispersion. • The location of the peak and the velocity of the peak movement:  $x^{(k)}(t) = V_a t + \omega_k \sqrt{4D_a t}, \qquad v^{(k)}(t) = V_a + 2\omega_k \sqrt{D_a/t},$  (3) where  $\omega_k > \omega_{k+1}$  is a constant that satisfies

$$k = 1 + \frac{1 - \operatorname{erf}(\omega_k)}{2} \left[ N - 1 - \sqrt{\pi} \omega_k [1 + \operatorname{erf}(\omega_k)] e^{\omega_k^2} \right].$$
(*t*) is greatest early on, when filaments are even.

- v<sup>(1)</sup>
- The distance between  $\mathbf{X}^{(k)}(t)$  and  $\mathbf{X}^{(k+1)}(t)$  grows with  $\sqrt{t}$ :  $x^{(k)}(t) - x^{(k+1)}(t) = 2(\omega_k - \omega_{k+1})\sqrt{D_a t}.$

# Christine Lind Cole and Hong Qian

Department of Applied Mathematics, University of Washington

clind@amath.washington.edu

#### **Bundle Growth: Fluctuating Barrier**

$$(x,t)]^{k-1}f_{\mathbf{X}}(x,t),$$

- Let  $\mathbf{Y}(t)$  represent a fluctuating barrier with resistant force *F*, frictional coefficient  $\eta_b$ , and diffusion coefficient  $D_b$ .
- **BR**:  $\mathbf{X}^{(1)}(t)$  and  $\mathbf{Y}(t)$  interact subject to  $\mathbf{X}^{(1)}(t) \leq \mathbf{Y}(t)$ .
- Easier to study  $f({x_i}, y, t)$ : joint *pdf* for all of the  $X_i(t)$  and Y(t):  $\frac{\partial f(\{x_i\}, y, t)}{\partial t} = \sum_{i=1}^{N} \left($
- $k=1 \setminus O_k \cup V_k$ •  $\xi_i$ : gap distance between  $\mathbf{X}_i(t)$  and  $\mathbf{Y}(t)$ ; *z*: center of mass:

$$\xi_i = y - x_i, (i = 1, 2, ..., N);$$

- Decouple:  $f(\{\xi_i\}, z, t) = \phi(\{\xi_i\}, t)P_{\mathbf{Z}}(z, t).$
- Gap distances,  $\phi(\{\xi_i\}, t)$ , approach a stationary distribution:

$$\phi(\{\xi_i\}) = \epsilon^N \exp\left(-\epsilon \sum_{i=1}^N \xi_i\right), \quad \epsilon = \frac{V_a + F/\eta_b}{ND_b + D_a}.$$
 (6)

• Bundle and barrier, together, undergo diffusion with a drift:  $\frac{\partial P_{\mathbf{Z}}(z,t)}{\partial t} = D_z \frac{\partial^2 P_{\mathbf{Z}}(z,t)}{\partial z^2}$ 

$$D_z = \frac{D_b D_a}{N D_b + D_a}, \qquad V_z = \frac{N D_b V_a - D_a \tilde{F} / \eta_b}{N D_b + D_a}.$$
 (8)

# **Force-dependent Polymerization**

•  $\alpha$  is proportional to: intrinsic polymerization rate,  $\alpha_0$ , monomer concentration,  $c_0$ , and the probability that the gap is  $\geq \delta$ :

$$\alpha = \alpha_0 c_0 e^-$$

- Recall that  $D_a$  and  $V_a$  are defined in  $\epsilon(\alpha) = \frac{(\alpha - \beta)\delta + F/\eta_b}{ND_b + (\alpha + \beta)\delta^2/2}$
- Consider the case of slow depolyme  $\widetilde{V}_{z} = \widetilde{\alpha} \frac{N - \widetilde{F}/2}{N + \widetilde{\alpha}/2}, \quad \widetilde{D}_{z} = \frac{\widetilde{\alpha}/2}{N + \widetilde{\alpha}/2}$

nondimensionalized:  $\tilde{V}_z = V_z \delta / D_b$ ,  $\widetilde{\alpha}_0 = \alpha_0 c_0 \delta^2 / D_h$ , and  $\widetilde{F} = F \delta / (\eta_h D_h)$ 

• Implicit force-velocity and force-fluctuation relations (Fig. 1):

$$\widetilde{F} = \frac{2N\widetilde{V}_z}{\widetilde{V}_z + \widetilde{F} - 2N} - \frac{2N^2 - N\widetilde{F}}{2N - \widetilde{V}_z - \widetilde{F}} \ln\left(\frac{2N\widetilde{V}_z/\widetilde{\alpha}_0}{2N - \widetilde{V}_z - \widetilde{F}}\right), \quad (12a)$$
$$\widetilde{F} = \frac{2N\widetilde{D}_z}{\widetilde{D}_z - 1} - \frac{N}{1 - \widetilde{D}_z} \ln\left(\frac{2N\widetilde{D}_z/\widetilde{\alpha}_0}{1 - \widetilde{D}_z}\right). \quad (12b)$$

 $z = \frac{D_b \sum_{j=1}^N x_j + D_a y}{ND_h + D_a}.$  (5)

$$\frac{z,t)}{2} - V_z \frac{\partial P_{\mathbf{Z}}(z,t)}{\partial z},$$
 (7)

(9)

terms of 
$$\alpha$$
,  $\beta$ , and  $\delta$  in (1):  
 $\frac{F}{\eta_b}$ 
(10)

erization, where 
$$\frac{\beta}{\alpha} \approx 0$$
:

$$\overline{2}'_{\widetilde{\alpha}} = \widetilde{\alpha}_0 e^{-\left(\frac{\alpha+F}{N+\widetilde{\alpha}/2}\right)}, \quad (11)$$

, 
$$D_z = D_z/D_b$$
,  $\tilde{\alpha} = \alpha \delta^2/D_b$ ,  
().



## Conclusions

- the other filaments lagging behind.
- filaments in the bundle to move together.
- $V_z$  and  $D_z$  both increase with  $\alpha_0 c_0$ .
- $\widetilde{V}_z = \widetilde{\alpha}_0 e^{-\widetilde{V}_z/N}.$

#### References

- nian ratchet. *Biophys. J.*, 65:316–324, 1993.

Figure 1: Force-Velocity and Force-Fluctuation Relations. **Top:** Curves are plotted for several values of  $\tilde{\alpha}_0$  all with N = 1. Note that as  $\alpha_0 c_0 \to \infty$ ,  $V_z \to 2 - \tilde{F}$  and  $\tilde{D}_z \to 1$  as expected from [3]. **Bottom:** Curves are plotted for bundles of size N, all with  $\tilde{\alpha}_0 = 10$ .

• Without a barrier, the bundle grows as a single filament with all

• **BR:** The interactions between the  $\mathbf{X}_i(t)$  and  $\mathbf{Y}(t)$  allow all N

•  $V_z$  and  $D_z$  both decrease with an increasing resistant force *F*.

• The critical stalling force  $F^*$ , such that  $V_z = 0$ , is scaled with N. • The free-load velocity  $V_z$  when F = 0 is scaled with  $\alpha_0 c_0$  and N:

• After being normalized by the critical stalling force  $F/F^*$ ,  $V_z(F/F^*)$  increases with N while  $D_z(F/F^*)$  decreases with it.

<sup>[1]</sup> C.L. Cole and H. Qian. The brownian ratchet revisited: Diffusion formalism, polymer-barrier attractions, and multiple filamentous bundle growth. (*Submitted*), February 2011.

<sup>[2]</sup> C.S. Peskin, G.M. Odell, and G.F. Oster. Cellular motions and thermal fluctuations: the brow-

<sup>[3]</sup> H. Qian. A stochastic analysis of a brownian ratchet model for actin-based motility and integrate-and-firing neurons. MCB: Mol. & Cell. Biomech., 1:267–278, 2004.