The Brownian Ratchet Revisited: Multiple Filamentous Growth
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The growth of tilamentous protein polymers can do work against e Let Y(t) represent a fluctuating barrier with resistant force F, . agg;{??é R 08 -
molecular or intracellular objects that resist movement. frictional coetficient 7, and ditfusion coetficient Dy, X N afto: 1o 06 -
The Brownian ratchet (BR) model was developed to describe such e BR: X(1)(#) and Y(t) interact subject to X1 () < Y(¢). =0T N 1 el fig =1000 i
systems [2]. In this work, we use a continuous diffusion e Easier to study f({x;},y, t): joint pdf for all of the X;(t) and Y(t): 05 T S o2k 8‘8; 10 _
formalism for the polymerization of a BR instead of the original N i 2 i e o byt G0 =01 Trrm
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e Represent the position of a filament tip, X(¢), as a continuous NDy + D, s & 0 f S N=2 -
diffusion process where §: the length of a monomer, * Decouple: f({Gi},z,t) = ¢({Ci}, t)Pz(z, 1). 02 _ -
e Gap distances, ¢({¢;}, t), approach a stationary distribution: 0.1 F e e -
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D,= (a+B)5*/2, Vi=(a—pB)S, (1)
and «, 5: polymerization & depolymerization rates.

* fx(x,t): probability density function (pdf) for the filament tip
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e Single filament without a barrier: fx(x,t) =e %Pt /+\/47TD,t.
e fx(x,t): traveling peak at x = V,t, with increasing dispersion.

Filamentous Bundle: No Barrier

e Let X;(t) (i =1,2,..., N) be N independent, identical filaments

o Let X(K)(t) be the position of the k" longest filament, when the
filament positions are ordered from longest to shortest:

XD > ..o > XED) > xW ) > xED ) > 00> XN ).

e The formula for the pdf of the k' longest filament:

fx(k)(x' t) — (k — 1)1'\(];\, — k)!FX(x; t)N_k [1 _ FX(x/ t)]k_le(xl t)/

where Fx(x,t) is the cumulative distribution function (cdf).

* f 0 (x,t): single traveling peak with increasing dispersion.
* The location of the peak and the velocity of the peak movement:
xO(8) = Vot + wp/4Dat, oW (t) = V, + 2w /Da/t, (3)
where wj > w1 1s a constant that satisfies

k=1 1= e;f(wk) {N — 1 — w1 + erf(wk)]ewl%} .

o v(1)(t) is greatest early on, when filaments are even.

 The distance between X¥)(t) and X5t (t) grows with /t:
x O () — xEHD (1) = 2(wy — wy1)v/Dat.
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* Bundle and barrier, together, undergo diffusion with a drift:
8PZ(z, t) azPZ(z, t) BPZ(z, t)
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Force-dependent Polymerization

* x is proportional to: intrinsic polymerization rate, g, monomer
concentration, ¢g, and the probability that the gap is > 0:

& = wgcge €. (9)
* Recall that D, and V,, are detined in terms of &, 5, and 4 in (1):
(« —B)o + E/ 1y
= . 10
) = XD+ (a t B)32/2 (10
e Consider the case of slow depolymerization, where g ~ 0:
- _N-F/2 ~ a/2 (e
V, = —, D, = —, = N+a/z) (11
- (XN+0¢/2 NZ N+uwa/2" * = oe (1
nondimensionalized: V, = V.6/Dy, D, = D,/Dy, & = a6*/ Dy,
/(52() — (X()C052/Db, and F = F5/(17bDb).
e Implicit force-velocity and force-fluctuation relations (Fig. 1):
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Figure 1: Force-Velocity and Force-Fluctuation Relations.

Top: Curves are plotted for several values of &g all with N = 1. Note
that as agcyg — o0, V;, — 2 — F and D, — 1 as expected from [3].
Bottom: Curves are plotted for bundles of size N, all with ag = 10.

Conclusions

e Without a barrier, the bundle grows as a single filament with all
the other filaments lagging behind.

e BR: The interactions between the X;(t) and Y(¢) allow all N
filaments in the bundle to move together.

e V, and D, both decrease with an increasing resistant force F.
e /. and D, both increase with agcy.
* The critical stalling force F*, such that V, = 0, is scaled with N.

* The free-load velocity V; when F = 0 is scaled with «ycp and N:
‘72 — EZOB_VZ/N.

e After being normalized by the critical stalling force F/F~,
V.(F/F*) increases with N while D,(F/F*) decreases with it.
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