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Introduction
The growth of filamentous protein polymers can do work against
molecular or intracellular objects that resist movement.
The Brownian ratchet (BR) model was developed to describe such
systems [2]. In this work, we use a continuous diffusion
formalism for the polymerization of a BR instead of the original
random-walk approach. For a more details and results, see [1].

Diffusion Formalism: One Filament
• Represent the position of a filament tip, X(t), as a continuous

diffusion process where δ: the length of a monomer,
Da = (α + β)δ2/2, Va = (α− β)δ, (1)

and α, β: polymerization & depolymerization rates.
• fX(x, t): probability density function (pdf) for the filament tip

∂ fX(x, t)
∂t

= Da
∂2 fX(x, t)

∂x2 −Va
∂ fX(x, t)

∂x
. (2)

• Single filament without a barrier: fX(x, t) = e−
(x−Vat)2

4Dat /
√

4πDat.
• fX(x, t): traveling peak at x = Vat, with increasing dispersion.

Filamentous Bundle: No Barrier
• Let Xi(t) (i = 1, 2, ..., N) be N independent, identical filaments
• Let X(k)(t) be the position of the kth longest filament, when the

filament positions are ordered from longest to shortest:
X(1)(t) ≥ . . . ≥ X(k−1)(t) ≥ X(k)(t) ≥ X(k+1)(t) ≥ . . . ≥ X(N)(t).

• The formula for the pdf of the kth longest filament:

fX(k)(x, t) =
N!

(k− 1)!(N − k)!
FX(x, t)N−k [1− FX(x, t)]k−1 fX(x, t),

where FX(x, t) is the cumulative distribution function (cdf ).
• fX(k)(x, t): single traveling peak with increasing dispersion.
• The location of the peak and the velocity of the peak movement:

x(k)(t) = Vat + ωk
√

4Dat, v(k)(t) = Va + 2ωk
√

Da/t, (3)
where ωk > ωk+1 is a constant that satisfies

k = 1 +
1− erf(ωk)

2

[
N − 1−

√
πωk[1 + erf(ωk)]eω2

k

]
.

• v(1)(t) is greatest early on, when filaments are even.
• The distance between X(k)(t) and X(k+1)(t) grows with

√
t:

x(k)(t)− x(k+1)(t) = 2(ωk−ωk+1)
√

Dat.

Bundle Growth: Fluctuating Barrier
• Let Y(t) represent a fluctuating barrier with resistant force F,

frictional coefficient ηb, and diffusion coefficient Db.
• BR: X(1)(t) and Y(t) interact subject to X(1)(t) ≤ Y(t).
• Easier to study f ({xi}, y, t): joint pdf for all of the Xi(t) and Y(t):

∂ f ({xi}, y, t)
∂t

=
N

∑
k=1

(
Da

∂2 f
∂x2

k
−Va

∂ f
∂xk

)
+ Db

∂2 f
∂2y

+
F
ηb

∂ f
∂y

. (4)

• ξi: gap distance between Xi(t) and Y(t); z: center of mass:

ξi = y− xi, (i = 1, 2, ..., N); z =
Db ∑N

j=1 xj + Day

NDb + Da
. (5)

• Decouple: f ({ξi}, z, t) = φ({ξi}, t)PZ(z, t).
• Gap distances, φ({ξi}, t), approach a stationary distribution:

φ({ξi}) = εN exp

(
−ε

N

∑
i=1

ξi

)
, ε =

Va + F/ηb
NDb + Da

. (6)

• Bundle and barrier, together, undergo diffusion with a drift:
∂PZ(z, t)

∂t
= Dz

∂2PZ(z, t)
∂z2 −Vz

∂PZ(z, t)
∂z

, (7)

Dz =
DbDa

NDb + Da
, Vz =

NDbVa− DaF/ηb
NDb + Da

. (8)

Force-dependent Polymerization
• α is proportional to: intrinsic polymerization rate, α0, monomer

concentration, c0, and the probability that the gap is ≥ δ:
α = α0c0e−εδ. (9)

• Recall that Da and Va are defined in terms of α, β, and δ in (1):

ε(α) =
(α− β)δ + F/ηb

NDb + (α + β)δ2/2
. (10)

• Consider the case of slow depolymerization, where β
α ≈ 0:

Ṽz = α̃
N − F̃/2
N + α̃/2

, D̃z =
α̃/2

N + α̃/2
, α̃ = α̃0e−

(
α̃+F̃

N+α̃/2

)
, (11)

nondimensionalized: Ṽz = Vzδ/Db, D̃z = Dz/Db, α̃ = αδ2/Db,
α̃0 = α0c0δ2/Db, and F̃ = Fδ/(ηbDb).

• Implicit force-velocity and force-fluctuation relations (Fig. 1):

F̃ =
2NṼz

Ṽz + F̃− 2N
− 2N2− NF̃

2N − Ṽz− F̃
ln

(
2NṼz/α̃0

2N − Ṽz− F̃

)
, (12a)

F̃ =
2ND̃z

D̃z− 1
− N

1− D̃z
ln

(
2ND̃z/α̃0

1− D̃z

)
. (12b)
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Figure 1: Force-Velocity and Force-Fluctuation Relations.
Top: Curves are plotted for several values of α̃0 all with N = 1. Note
that as α0c0 → ∞, Ṽz → 2− F̃ and D̃z → 1 as expected from [3].
Bottom: Curves are plotted for bundles of size N, all with α̃0 = 10.

Conclusions
• Without a barrier, the bundle grows as a single filament with all

the other filaments lagging behind.
• BR: The interactions between the Xi(t) and Y(t) allow all N

filaments in the bundle to move together.
• Vz and Dz both decrease with an increasing resistant force F.
• Vz and Dz both increase with α0c0.
• The critical stalling force F∗, such that Vz = 0, is scaled with N.
• The free-load velocity Vz when F = 0 is scaled with α0c0 and N:

Ṽz = α̃0e−Ṽz/N.
• After being normalized by the critical stalling force F/F∗,

Vz(F/F∗) increases with N while Dz(F/F∗) decreases with it.
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