Mathematical Models for Molecular Motors: The Polymerization Ratchet

Christine Lind Cole

Department of Applied Mathematics, University of Washington clind@amath.washington.edu

December 7, 2011

About Me

Recent Ph.D. in Applied Mathematics

University of Washington, Seattle, WA

- Dissertation:
 - Mathematical Models for Facilitated Diffusion and the Brownian Ratchet
- Advisor:
 - Hong Qian

Undergraduate Degree:

- Macalester College, St. Paul, MN
- Math & Physics Major

From Tacoma, WA

Outline

Introduction

Molecular Motors Motivation for the Polymerization Ratchet Model

Polymerization Model

Formulation of the Model and Simulations Analysis of the Mathematical Model

The Polymerization Ratchet Model

Single Polymer Ratchet N Polymer Bundle Ratchet

Conclusions

Summary

What are Molecular Motors? In General Terms:

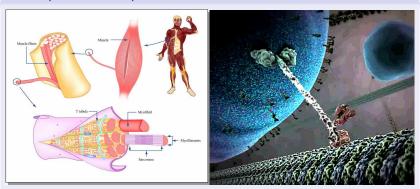
Protein Molecules in the Cell that:

- Generate Forces
- Cause the Transport of Material

Introduction •00000000

What are Molecular Motors?

Two Specific Examples:

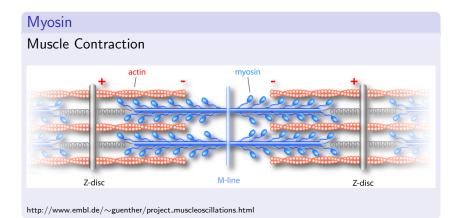


Muscle: http://www.bio.davidson.edu/people/midorcas/animalphysiology/websites/2011/Miller/Background.html

Kinesin: http://multimedia.mcb.harvard.edu/media.html

Introduction 00000000

Conventional Molecular Motors

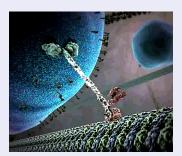


Conventional Molecular Motors

Kinesin

Intracellular Transport

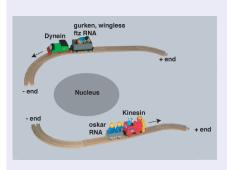
Short Video Excerpt: Inner Life of the Cell



http://multimedia.mcb.harvard.edu/media.html

Conventional Molecular Motors

Conventional Molecular Motors



http://www.bioch.ox.ac.uk/aspsite/index.asp?pageid=573

Move Along Polymer Tracks

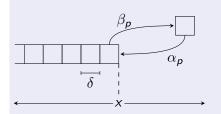
- myosin actin microfilaments
- kinesin tubulin microtubules

Introduction 000000000

Polymerization

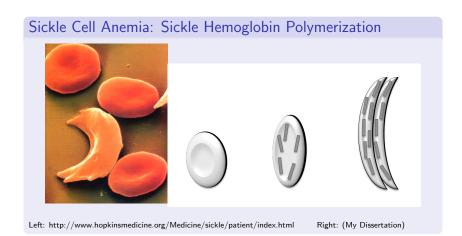
Another Way to Cause Motion/Transport

Change the Length of the Polymers Themselves!

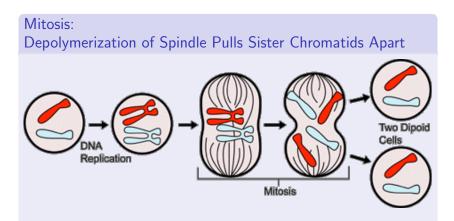


- Polymerization: Adding Subunits
- Depolymerization: Subtracting Subunits
- (Subunits = Monomers)

Polymerization Causing Cell Membrane Deformation



Depolymerization During Cell Division



 $http://www.ncbi.nlm.nih.gov/About/primer/genetics_cell.html\\$

Why Do We Care About Molecular Motors?

Molecular Motors are Special Because:

- Chemical Energy ⇒ Mechanical Energy
 - DIRECTLY! (Not Via Heat or Electrical Energy)
- Highly Efficient :
 - 6 Times More Efficient than a Car

Why Do We Care About Molecular Motors?

Molecular Motors are Special Because:

- Chemical Energy ⇒ Mechanical Energy
 - DIRECTLY! (Not Via Heat or Electrical Energy)
- Highly Efficient :
 - 6 Times More Efficient than a Car
- Models for Molecular Motors
 - ⇒ Theoretical Foundations for Nano-Engineering
 - Nano-mechano-chemical Machines
 - Tiny Robots!

Introduction 00000000

Introduction

Motivation for the Polymerization Ratchet Model

Polymerization Model

Analysis of the Mathematical Model

The Polymerization Ratchet Model

Conclusions

Motivation: Actin-Based Motility

Listeria monocytogenes:

http://textbookofbacteriology.net/Listeria_2.html

At body temperature:

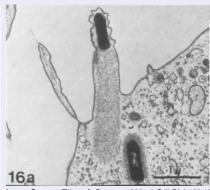
Listeria is propelled by polymerization of actin filaments.

Bacteria that Causes Listeriosis Usually Only Flu-Like Symptoms, CDC Estimates that in the U.S.

- 1,600 People per Year Become Seriously III due to Listeriosis
- Out of Those, 260 Die

Motivation: Actin-Based Motility

Actin-Based Motility of Listeria (Click for Movie)



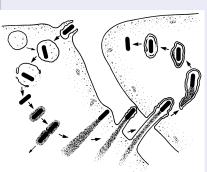


Image Source: Tilney & Portnoy 1989, J Cell Biol 109:1597-1608

Movie Source: Theriot & Portnoy: http://cmgm.stanford.edu/theriot/movies.htm

Introduction 00000

Motivation: Actin-Based Motility

Actin-Based Motility of Listeria

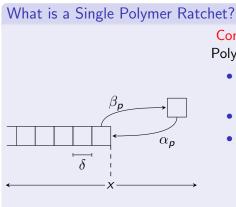
Motivates Study of:

Polymerization-Driven Motion of a Fluctuating Barrier

Mathematical Framework:

- Diffusion Formalism Brownian Ratchet Model
- Building On Simplest Case: Single Polymer Ratchet

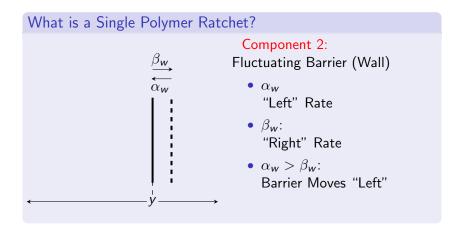
Introduction 00000



Component 1:

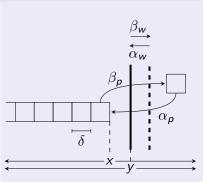
Polymer

- α_p , β_p : Adding/Subtracting Rates
- δ: Monomer Width
- $\alpha_p > \beta_p$: Polymer Grows (On Average)



Introduction 00000

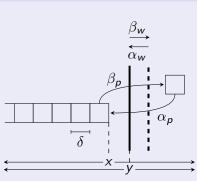
What is a Single Polymer Ratchet?



When Components Interact:

- Barrier Motion "blocked" by Polymer
- Polymer Growth "blocked" by Barrier

What is a Single Polymer Ratchet?



When Components Interact:

If Polymerization is "Fast:"

- Barrier Moves Away
- Polymer Immediately Grows
- Blocking Backward Fluctuation of Barrier

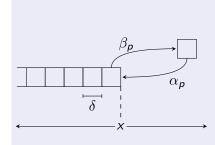
Barrier is "Ratcheted" Forward

Polymerization Model

Formulation of the Model and Simulations Analysis of the Mathematical Model

N Polymer Bundle Ratchet

How does Polymerization Work?



 x: position of the end of the polymer

Rate Constants:

- α_p : adding a monomer (growth rate)
- β_p : subtracting a monomer (shrinking rate)

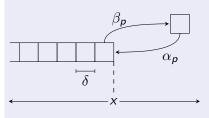
Basic Polymerization Model

How does Polymerization Work?

•
$$\frac{dx}{dt} = (\alpha_p - \beta_p)\delta$$

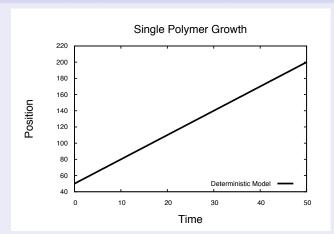
• x₀: initial position

$$x(t) = x_0 + (\alpha_p - \beta_p)\delta t$$

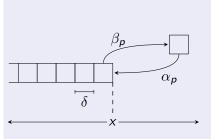


Polymer Position -vs- Time: Deterministic Model

$$x(t) = x_0 + (\alpha_p - \beta_p)\delta t$$
, $\alpha_p = 4$, $\beta_p = 1$, $x_0 = 50$



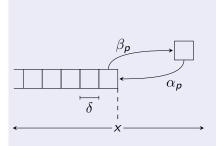
How does Polymerization Work?



Deterministic System:

- Motion is continuous in Space, Time
- Initial Condition ⇒ one possible trajectory

How does Polymerization Work?



Deterministic System:

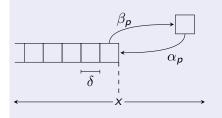
- Motion is continuous in Space, Time
- Initial Condition ⇒ one possible trajectory

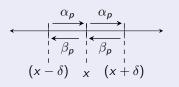
Stochastic System:

- Direction of motion Time motion occurs Random
- Initial Condition
 - ⇒ many possible trajectories

Stochastic Polymerization Model

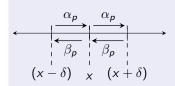
Continuous-Time 1-D Biased Random Walk





Generate Exact Stochastic Simulations ⇒ Gillespie Algorithm

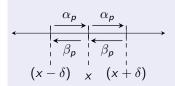
Basic Simulation Scheme:



Start: $t = t_0, x = x_0$.

- Wait dt for an "Event" to Occur. Set $t = t_0 + dt$.
 - If "Adding Event" Set $x = x_0 + \delta$.
 - If "Subtracting Event" Set $x = x_0 - \delta$.
- Repeat Until $t = t_{max}$.

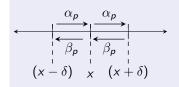
Basic Simulation Scheme:



Start: $t = t_0$, $x = x_0$.

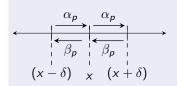
- Wait dt for an "Event" to Occur. Set $t = t_0 + dt$.
 - If "Adding Event" Set $x = x_0 + \delta$.
 - If "Subtracting Event" Set $x = x_0 - \delta$.
- Repeat Until $t = t_{max}$.

Wait dt for an "Event" to Occur.



- Number of Events: Poisson Process with rate $\lambda = \alpha_{p} + \beta_{p}$.
- \Rightarrow dt is a random number from Exponential Distribution, rate λ .
- If u is a random number from a Uniform(0,1) Distribution, $dt = -\frac{1}{\lambda} \log u$

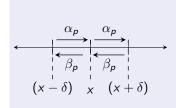
Basic Simulation Scheme:



Start: $t = t_0, x = x_0$.

- Wait dt for an "Event" to Occur. Set $t = t_0 + dt$.
 - If "Adding Event" Set $x = x_0 + \delta$.
 - If "Subtracting Event" Set $x = x_0 - \delta$.
- Repeat Until $t = t_{max}$.

Decide which "Event" Occurs.



Probability of Subtracting or Adding:

•
$$P(-) = \frac{\beta_p}{\alpha_p + \beta_p} = \frac{\beta_p}{\lambda}$$

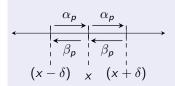
•
$$P(+) = \frac{\alpha_p}{\alpha_p + \beta_p} = \frac{\alpha_p}{\lambda}$$

• Note:
$$P(-) + P(+) = 1$$
.

Generate a Uniform(0,1) random number, u.

- If $0 \le u < P(-)$, Subtract
- If $P(-) \leq u \leq 1$, Add

Basic Simulation Scheme:

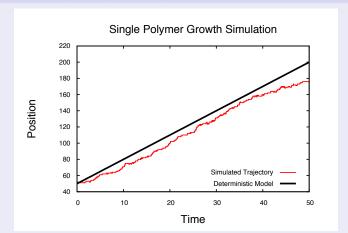


Start: $t = t_0$, $x = x_0$.

- Wait dt for an "Event" to Occur. Set $t = t_0 + dt$.
 - If "Adding Event" Set $x = x_0 + \delta$.
 - If "Subtracting Event" Set $x = x_0 - \delta$.
- Repeat Until $t = t_{max}$.

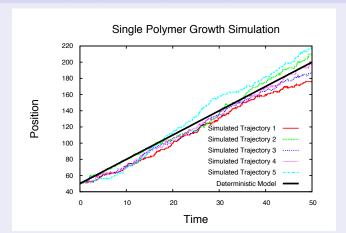
Polymer Position -vs- Time: Simulated Data

$$x(t) = x_0 + (\alpha_p - \beta_p)\delta t$$
, $\alpha_p = 4$, $\beta_p = 1$, $x_0 = 50$



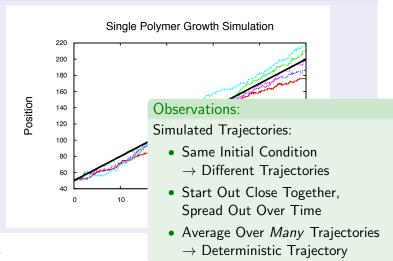
Polymer Position -vs- Time: Simulated Data

$$x(t) = x_0 + (\alpha_p - \beta_p)\delta t$$
, $\alpha_p = 4$, $\beta_p = 1$, $x_0 = 50$



Polymer Position -vs- Time: Simulated Data

$$x(t) = x_0 + (\alpha_p - \beta_p)\delta t, \quad \alpha_p = 4, \quad \beta_p = 1, \quad x_0 = 50$$



Introduction

Polymerization Model

Analysis of the Mathematical Model

The Polymerization Ratchet Model

Conclusions

Stochastic Polymerization Model

Formulating the Mathematical Model:

Random Variable $\mathbf{X}(t)$: Position of Polymer Tip

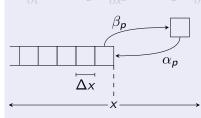
- Discrete Space Model
 - $P_{\mathbf{X}}(x,t) = \text{Prob}\{\mathbf{X}(t) = x\}$
 - Biased Random Walk
- Continuous Space Model
 - $P_{\mathbf{X}}(x,t) = \text{Prob}\{x < \mathbf{X}(t) \le x + dx\}$
 - Biased Brownian Motion

Single Polymer (No Barrier)

Random Variable $\mathbf{X}(t)$: Position of Polymer Tip

$$\frac{\partial P_{\mathbf{X}}(x,t)}{\partial t} = \alpha_{p} P_{\mathbf{X}}(x - \Delta x, t) + \beta_{p} P_{\mathbf{X}}(x + \Delta x, t) - (\alpha_{p} + \beta_{p}) P_{\mathbf{X}}(x, t)$$

$$\frac{\partial P_{\mathbf{X}}(x,t)}{\partial P_{\mathbf{X}}(x,t)} = D_{2} \frac{\partial^{2} P_{\mathbf{X}}(x,t)}{\partial P_{\mathbf{X}}(x,t)} - V_{2} \frac{\partial P_{\mathbf{X}}(x,t)}{\partial P_{\mathbf{X}}(x,t)}$$



Discrete Space Model:

- $P_{\mathbf{X}}(x,t) = \text{Prob}\{\mathbf{X}(t) = x\}$
- Biased Random Walk

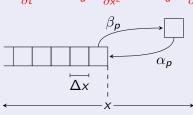
To Obtain Continuous Space Model:

Taylor Expand in x...

Random Variable X(t): Position of Polymer Tip

$$\frac{\partial P_{\mathbf{X}}(x,t)}{\partial t} = \alpha_{p} P_{\mathbf{X}}(x - \Delta x, t) + \beta_{p} P_{\mathbf{X}}(x + \Delta x, t) - (\alpha_{p} + \beta_{p}) P_{\mathbf{X}}(x, t)$$

$$\frac{\partial P_{\mathbf{X}}(x,t)}{\partial t} = D_{a} \frac{\partial^{2} P_{\mathbf{X}}(x,t)}{\partial x^{2}} - V_{a} \frac{\partial P_{\mathbf{X}}(x,t)}{\partial x}$$



$$D_{a} = \lim_{\Delta x \to 0} (\alpha_{p} + \beta_{p}) \frac{\Delta x^{2}}{2},$$

Continuous Space Model:

- $P_{\mathbf{X}}(x,t) =$ $\operatorname{Prob}\{x < \mathbf{X}(t) \le x + dx\}$
- Biased Brownian Motion (Diffusion with Drift)

$$V_{a} = \lim_{\Delta x \to 0} (\alpha_{p} - \beta_{p}) \Delta x$$

Mathematical Model

Continuous Space Polymer Length Model

Partial Differential Equation for Diffusion with Drift

•
$$\frac{\partial P_{\mathbf{X}}(\mathbf{x},t)}{\partial t} = D_{\mathbf{a}} \frac{\partial^{2} P_{\mathbf{X}}(\mathbf{x},t)}{\partial x^{2}} - V_{\mathbf{a}} \frac{\partial P_{\mathbf{X}}(\mathbf{x},t)}{\partial x}$$

$$D_a = \lim_{\Delta x \to 0} (\alpha_p + \beta_p) \frac{\Delta x^2}{2}, \qquad V_a = \lim_{\Delta x \to 0} (\alpha_p - \beta_p) \Delta x$$

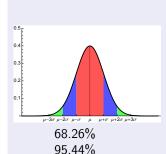
Solution:

•
$$P_{\mathbf{X}}(x,t) = \frac{1}{\sqrt{4\pi D_a t}} \exp\left(-\frac{(x-V_a t)^2}{4D_a t}\right)$$

(Brownian Motion)

Mathematical Model

Continuous Space Polymer Length Model (Click for Movie)



99.74%

Solution:

•
$$P_{\mathbf{X}}(x,t) = \frac{1}{\sqrt{4\pi D_a t}} \exp\left(-\frac{(x-V_a t)^2}{4D_a t}\right)$$

Gaussian (Normal) Distribution:

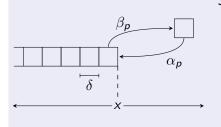
•
$$P_{\mathbf{X}}(x,t) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

$$\bullet$$
 $\mu = V_a t$

•
$$\sigma^2 = 2D_a t$$

Basic Polymerization Model

How does Polymerization Work?



Deterministic System:

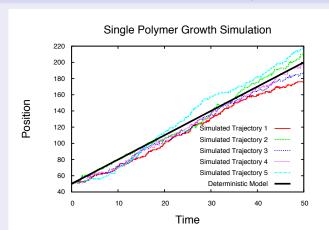
• Polymer Length: $x(t) = V_a t$

Stochastic System:

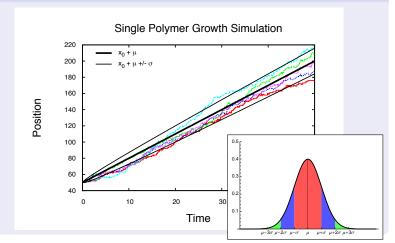
 Polymer Length Distribution:

$$\begin{aligned} P_{\mathbf{X}}(x,t) &= \\ \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), \\ \mu &= \mathbf{V_a}t, \quad \sigma^2 = 2D_a t \end{aligned}$$

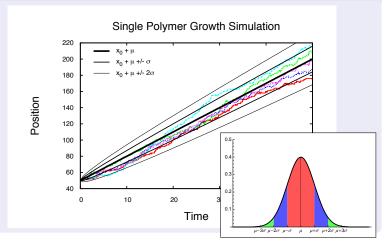
$$\mu = V_a t$$
, $\sigma^2 = 2D_a t$, $V_a = 3$, $D_a = 5/2$, $x_0 = 50$



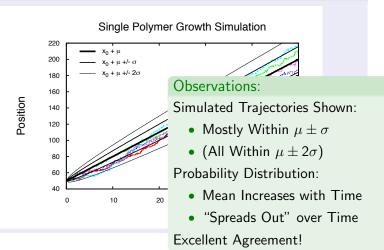
$$\mu = V_a t$$
, $\sigma^2 = 2D_a t$, $V_a = 3$, $D_a = 5/2$, $x_0 = 50$



$$\mu = V_a t$$
, $\sigma^2 = 2D_a t$, $V_a = 3$, $D_a = 5/2$, $x_0 = 50$



$$\mu = V_a t$$
, $\sigma^2 = 2D_a t$, $V_a = 3$, $D_a = 5/2$, $x_0 = 50$



Stochastic Polymerization Model Summary

Position of the End of a Single Polymer

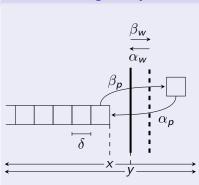
- Simulation Scheme (Spatially Discrete Model)
- Analytical Result: Formula for Probability Distribution (Spatially Continuous Model)
- ⇒ Build On These to Formulate a Model for the Polymerization Ratchet!

Analysis of the Mathematical Model

The Polymerization Ratchet Model Single Polymer Ratchet N Polymer Bundle Ratchet

Single Polymer Ratchet Model

What is a Single Polymer Ratchet?



When Components Interact:

If Polymerization is "Fast:"

- Barrier Moves Away
- Polymer Immediately Grows
- Blocking Backward Fluctuation of Barrier

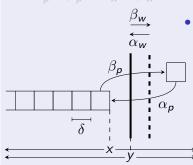
Barrier is "Ratcheted" Forward

Simulation: Gillespie Algorithm

Basic Simulation Idea

$$\lambda = \alpha_p + \beta_p + \alpha_w + \beta_w$$

Start:
$$t = t_0$$
, $x = x_0$, $y = y_0$.



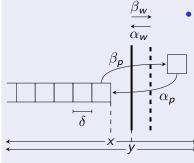
- Wait dt for an "Event" to Occur. Set $t = t_0 + dt$.
 - If "Polymer Adding Event" Set $x = x_0 + \delta$.
 - If "Polymer Subtracting Event" Set $x = x_0 - \delta$.
 - If "Wall Moves Right Event"
 - If "Wall Moves Left Event"

Simulation: Gillespie Algorithm

Basic Simulation Idea

$$\lambda = \alpha_p + \beta_p + \alpha_w + \beta_w$$

Start:
$$t = t_0$$
, $x = x_0$, $y = y_0$.



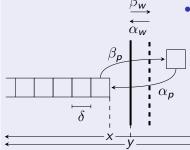
- Wait dt for an "Event" to Occur. Set $t = t_0 + dt$.
 - If "Polymer Adding Event" Set $x = x_0 + \delta$.
 - If "Polymer Subtracting Event" Set $x = x_0 - \delta$.
 - If "Wall Moves Right Event" Set $y = y_0 + \delta$.
 - If "Wall Moves Left Event" Set $y = y_0 - \delta$.

Simulation: Gillespie Algorithm

Basic Simulation Idea

$$\lambda = \alpha_p + \beta_p + \alpha_w + \beta_w$$

Start:
$$t = t_0$$
, $x = x_0$, $y = y_0$.

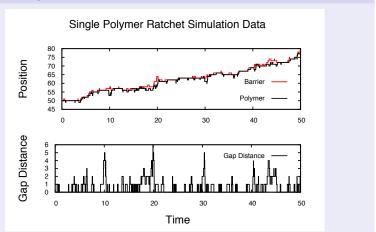


- Wait dt for an "Event" to Occur. Set $t = t_0 + dt$.
 - If "Polymer Adding Event" Set $x = x_0 + \delta$.
 - If "Polymer Subtracting Event" Set $x = x_0 - \delta$.
 - If "Wall Moves Right Event" Set $y = y_0 + \delta$.
 - If "Wall Moves Left Event" Set $y = y_0 - \delta$.

Geometric Constraint: Polymer/Wall Can "Block" Events

Polymerization Ratchet 0000000000000

$$\alpha_p = 4$$
, $\beta_p = 1$, $\alpha_w = 2$, $\beta_w = 1$, $x_0 = y_0 = 50$



Polymerization Ratchet 000000000000

$$\alpha_p=4, \quad \beta_p=1, \quad \alpha_w=2, \quad \beta_w=1, \quad x_0=y_0=50$$

Single Polymer Ratchet Simulation Data

Observations:

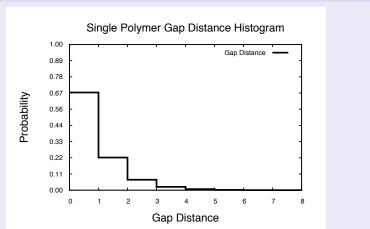
For This Set of Parameters:

Polymer "Pushes" the Barrier

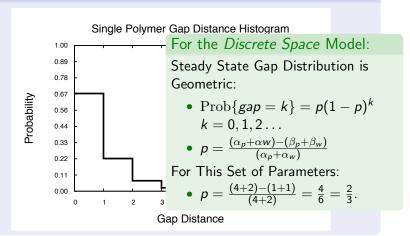
Gap Distance \rightarrow Steady State

Time

$$\alpha_{\rm p}=4, \quad \beta_{\rm p}=1, \quad \alpha_{\rm w}=2, \quad \beta_{\rm w}=1, \quad t_{\rm max}=10,000$$



$$\alpha_p = 4$$
, $\beta_p = 1$, $\alpha_w = 2$, $\beta_w = 1$, $t_{max} = 10,000$



Single Polymer Ratchet Model

Polymerization Ratchet 000000000000000

Formulating the Mathematical Model:

Can Formulate both:

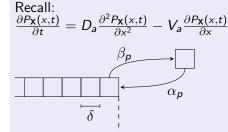
- Discrete Space Model
- Continuous Space Model

Focus on the *Continuous Space* Model Because:

- Analytical Results can be (More) Easily Obtained
- Easier to Incorporate Additional Features:
 - Attraction Between Polymer and Barrier
 - N Polymer Ratchet

Single Polymer (No Barrier)

Random Variable X(t): Position of Polymer Tip



Continuous Space Model:

Polymerization Ratchet 00000000000000

- $P_{\mathbf{X}}(x,t) =$ $\operatorname{Prob}\{x < \mathbf{X}(t) \leq x + dx\}$
- Biased Brownian Motion (Diffusion with Drift)

Barrier (No Polymer)

Random Variable $\mathbf{Y}(t)$: Position of Barrier

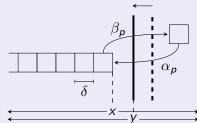
$$\frac{\partial P_{\mathbf{Y}}(y,t)}{\partial t} = D_{b} \frac{\partial^{2} P_{\mathbf{Y}}(y,t)}{\partial y^{2}} + \frac{F_{\mathsf{ext}}}{\eta_{b}} \frac{\partial P_{\mathbf{Y}}(y,t)}{\partial y}$$

Continuous Space Model: D_b

 Biased Brownian Motion (Diffusion with Drift)

Diffusion Formalism Model: [Qian, 2004]

$$\frac{\partial P_{XY}(x,y,t)}{\partial t} = D_a \frac{\partial^2 P_{XY}}{\partial x^2} + D_b \frac{\partial^2 P_{XY}}{\partial y^2} - V_a \frac{\partial P_{XY}}{\partial x} + \frac{F_{ext}}{\eta_b} \frac{\partial P_{XY}}{\partial y}$$
(1)



Joint pdf:

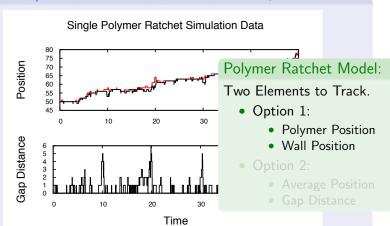
•
$$P_{\mathbf{XY}}(x,t) =$$

 $\operatorname{Prob}\{x < \mathbf{X}(t) \le x + dx,$
 $y < \mathbf{Y}(t) \le y + dy\}$

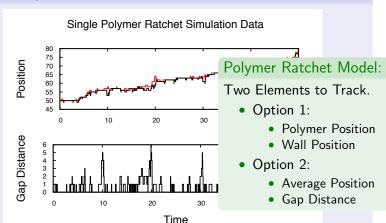
• **X**(*t*), **Y**(*t*) Coupled by Geometric Constraint:

$$X(t) \leq Y(t)$$

$$\alpha_p = 4$$
, $\beta_p = 1$, $\alpha_w = 2$, $\beta_w = 1$, $x_0 = y_0 = 50$



$$\alpha_p = 4$$
, $\beta_p = 1$, $\alpha_w = 2$, $\beta_w = 1$, $x_0 = y_0 = 50$



(1)

Single Polymer Ratchet

Diffusion Formalism Model: [Qian, 2004]

$$\frac{\partial P_{\mathbf{XY}}(\mathbf{x}, \mathbf{y}, t)}{\partial t} = D_a \frac{\partial^2 P_{\mathbf{XY}}}{\partial \mathbf{x}^2} + D_b \frac{\partial^2 P_{\mathbf{XY}}}{\partial \mathbf{y}^2} - V_a \frac{\partial P_{\mathbf{XY}}}{\partial \mathbf{x}} + \frac{F_{\mathbf{ext}}}{\eta_b} \frac{\partial P_{\mathbf{XY}}}{\partial \mathbf{y}}$$

$$\xrightarrow{F_{\mathbf{ext}}} D_b$$
Strategy: Decouple System Introduce:

• $\Delta(t)$: Gap Distance
• $\mathbf{Z}(t)$: Average Position Change of Variables:
• $\Delta = \mathbf{Y} - \mathbf{X}$, $\mathbf{Z} = \frac{D_b \mathbf{X}}{D_b}$

Strategy: Decouple System

Introduce:

• $\Delta(t)$: Gap Distance

Polymerization Ratchet 000000000000000

• **Z**(t): Average Position

Change of Variables:

•
$$\Delta = \mathbf{Y} - \mathbf{X}$$
, $\mathbf{Z} = \frac{D_b \mathbf{X} + D_a \mathbf{Y}}{D_b + D_a}$

Single Polymer Ratchet

Diffusion Formalism Model: [Qian, 2004]

$$\frac{\partial P_{XY}(x,y,t)}{\partial t} = D_a \frac{\partial^2 P_{XY}}{\partial x^2} + D_b \frac{\partial^2 P_{XY}}{\partial y^2} - V_a \frac{\partial P_{XY}}{\partial x} + \frac{F_{ext}}{\eta_b} \frac{\partial P_{XY}}{\partial y}$$
(1)

$$\frac{\partial P_{\Delta}(\Delta, t)}{\partial t} = (D_a + D_b) \frac{\partial^2 P_{\Delta}}{\partial \Delta^2} + \left(V_a + \frac{F_{\text{ext}}}{\eta_b}\right) \frac{\partial P_{\Delta}}{\partial \Delta}, \quad (\Delta \ge 0)$$
 (2a)

$$\frac{\partial P_{\mathbf{Z}}(z,t)}{\partial t} = D_{z} \frac{\partial^{2} P_{\mathbf{Z}}}{\partial z^{2}} - V_{z} \frac{\partial P_{\mathbf{Z}}}{\partial z}, \quad -\infty < z < +\infty$$
 (2b)

$$D_{a} = (\alpha + \beta) \frac{\delta^{2}}{2}, V_{a} = (\alpha - \beta) \delta$$
$$D_{z} = \frac{D_{a}D_{b}}{D_{b} + D_{a}}, V_{z} = \frac{D_{b}V_{a} - D_{a}F_{ext}/\eta_{b}}{D_{b} + D_{a}}$$

- (1) Constraint: $\mathbf{X}(t) \leq \mathbf{Y}(t)$
- (2a) Constraint: $\Delta(t) \geq 0$

Single Polymer Ratchet: Gap Distance

Gap Distance Approaches a Steady State:

$$\frac{\partial P_{\Delta}(\Delta, t)}{\partial t} = \left(D_a + D_b\right) \frac{\partial^2 P_{\Delta}}{\partial \Delta^2} + \left(V_a + \frac{F_{ext}}{\eta_b}\right) \frac{\partial P_{\Delta}}{\partial \Delta}, \quad \Delta \ge 0$$

Subject to:

- No-Flux B.C. at $\Delta = 0$
- Normalization Condition

"+": Diffusion \rightarrow Boundary Conditions: Can't "Leak Out"

Single Polymer Ratchet: Gap Distance

Gap Distance Approaches a Steady State:

$$\frac{\partial P_{\Delta}(\Delta, t)}{\partial t} = \left(D_a + D_b\right) \frac{\partial^2 P_{\Delta}}{\partial \Delta^2} + \left(V_a + \frac{F_{ext}}{\eta_b}\right) \frac{\partial P_{\Delta}}{\partial \Delta}, \quad \Delta \ge 0$$

Subject to:

- No-Flux B.C. at Δ = 0.
- Normalization Condition



"+": Diffusion \rightarrow Boundary Conditions: Can't "Leak Out"



 $\mathsf{Gap} \to \mathsf{Steady} \; \mathsf{State!}$

Single Polymer Ratchet: Gap Distance

$P_{\Lambda_m}(\Delta)$: Steady State Gap Distance

$$0 = D_{\delta} \frac{d^2 P_{\Delta_{ss}}}{d\Delta^2} + V_{\delta} \frac{dP_{\Delta_{ss}}}{d\Delta}, \qquad \Delta \ge 0$$

•
$$D_{\delta} = (D_a + D_b)$$

•
$$V_{\delta} = \left(V_{a} + \frac{F_{\mathrm{ext}}}{\eta_{b}}\right)$$

- No-Flux B.C. at Δ = 0.
- Normalization Condition

Steady State Distribution

Exponential

$$P_{\Delta_{ss}}(\Delta) = \frac{V_{\delta}}{D_{\delta}} e^{-\frac{V_{\delta}\Delta}{D_{\delta}}}$$

Single Polymer Ratchet: Average Position

Average Position: Diffusion with Drift

$$\frac{\partial P_{\mathbf{Z}}(z,t)}{\partial t} = D_{z} \frac{\partial^{2} P_{\mathbf{Z}}}{\partial z^{2}} - V_{z} \frac{\partial P_{\mathbf{Z}}}{\partial z}, \qquad -\infty < z < \infty$$

Solution:

$$\bullet P_{\mathbf{Z}}(z,t) = \frac{1}{\sqrt{4\pi D_z t}} e^{-\frac{(z-V_z t)^2}{4D_z t}}$$

With:

•
$$D_z = \frac{D_a D_b}{D_b + D_a}$$
, $V_z = \frac{D_b V_a - D_a F_{\text{ext}} / \eta_b}{D_b + D_a}$

Mean:

$$\mu = V_z t$$

Variance:

$$\sigma^2 = 2D_z t$$

Single Polymer Ratchet: Average Position

Average Position: Diffusion with Drift

$$\frac{\partial P_{\mathbf{Z}}(z,t)}{\partial t} = D_{z} \frac{\partial^{2} P_{\mathbf{Z}}}{\partial z^{2}} - V_{z} \frac{\partial P_{\mathbf{Z}}}{\partial z}, \qquad -\infty < z < \infty$$

Solution:

$$\bullet P_{\mathbf{Z}}(z,t) = \frac{1}{\sqrt{4\pi D_z t}} e^{-\frac{(z-V_z t)^2}{4D_z t}}$$

With:

•
$$D_z = \frac{D_a D_b}{D_b + D_a}$$
, $V_z = \frac{D_b V_a - D_a F_{\text{ext}}/\eta_b}{D_b + D_a}$

Normal Distribution

Mean:

$$\mu = V_z t$$

Variance:

$$\sigma^2 = 2D_z t$$

Stochastic Polymerization Ratchet Model

Summary of Single Polymer Ratchet Results

- Gap Distance Reaches a Steady State
- Average Position Follows Biased Brownian Motion $\mu = V_z t$ (Average of Drift Rates for Polymer and Barrier)
- ⇒ Build On These Results to Formulate a Model for the N Polymer Ratchet! (Hint at a Few Results)

Introduction

Polymerization Ratchet •000000

Polymerization Model

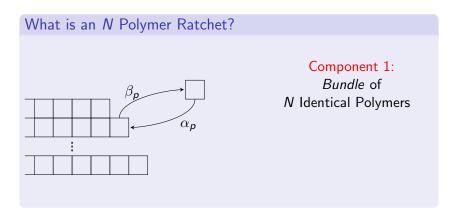
Analysis of the Mathematical Model

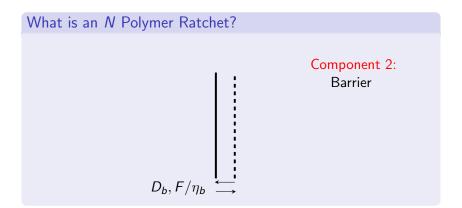
The Polymerization Ratchet Model

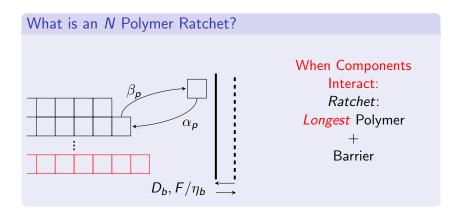
N Polymer Bundle Ratchet

Conclusions

000000

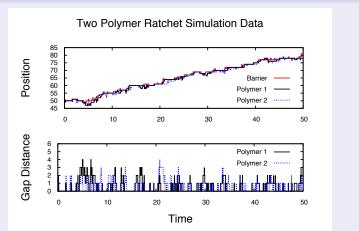






Two Polymer Ratchet Simulated Data

$$\alpha_p = 4$$
, $\beta_p = 1$, $\alpha_w = 2$, $\beta_w = 1$, $t_{max} = 10,000$



10

om afbita de cabalitaca cindi

Two Polymer Ratchet Simulated Data

$$\alpha_p=4, \quad \beta_p=1, \quad \alpha_w=2, \quad \beta_w=1, \quad t_{max}=10,000$$

Two Polymer Ratchet Simulation Data

Observations:

For This Set of Parameters:

• Two Polymers "Push" the Barrier "Faster" than One

• Each Gap Distance

• Steady State

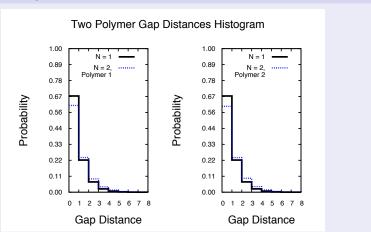
20

Time

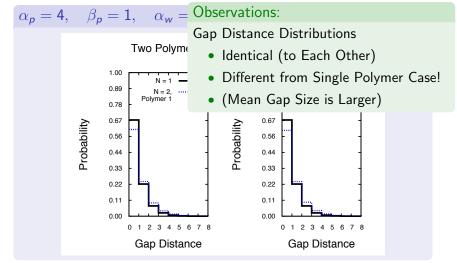
30

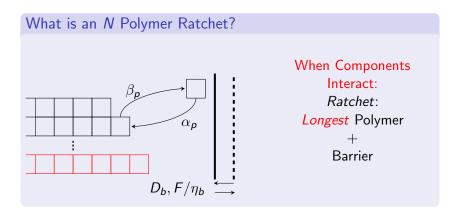
Two Polymer Ratchet Simulated Data

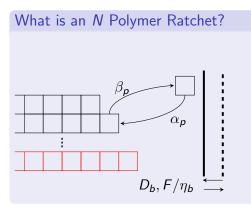
$$\alpha_p = 4$$
, $\beta_p = 1$, $\alpha_w = 2$, $\beta_w = 1$, $t_{max} = 10,000$



Two Polymer Ratchet Simulated Data







N Polymer Ratchet:

Interaction Between:

- Longest Polymer
- Barrier

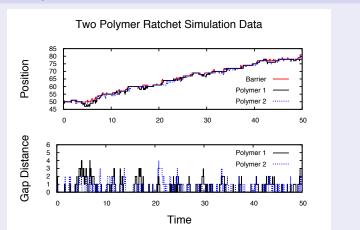
Corresponds to:

 Smallest Gap Distance (Min. Gap)

Two Polymer Ratchet Simulated Data

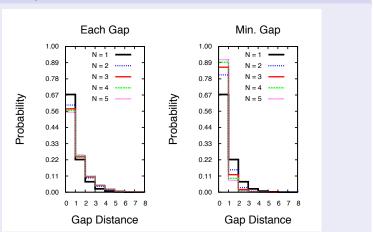
Polymerization Ratchet 0000000

$$\alpha_p = 4$$
, $\beta_p = 1$, $\alpha_w = 2$, $\beta_w = 1$, $t_{max} = 10,000$



N Polymer Ratchet Simulated Data

$$\alpha_p = 4$$
, $\beta_p = 1$, $\alpha_w = 2$, $\beta_w = 1$, $t_{max} = 10,000$

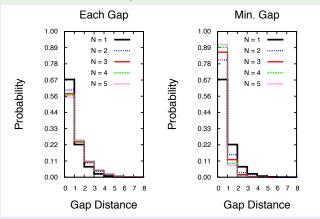


Observations:

Adding Polymers to the Bundle:

 α_p

- Increases Mean Gap Distance for Each Gap
- Decreases Mean Gap Distance for the Minimum Gap

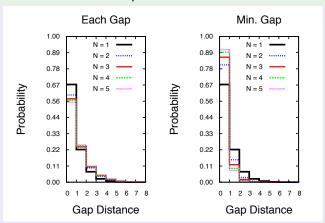


Observations:

In Other Words,

Adding Polymers to the Bundle:

• Decreases Mean Gap Between Bundle and the Barrier



 α_p

Stochastic Polymerization Ratchet Model

Summary of N Polymer Ratchet Results

Observations from Simulated Data: Increasing Number of Polymers in the Bundle

- Allows Bundle to "Push Faster"
- Decreases the Mean Minimum Gap Distance Between Bundle and the Barrier

Analysis of the Mathematical Model

N Polymer Bundle Ratchet

Conclusions

Summary

Conclusions

Summary

In This Talk:

- 1. Single Polymer Growth Model (No Barrier)
 - Stochastic Simulations (Gillespie Algorithm)
 - Continuous Space Mathematical Model Results:
 - Polymer Position ~ Biased Brownian Motion (Diffusion with Drift)

Conclusions

Summary

In This Talk:

- 1. Single Polymer Growth Model (No Barrier)
- 2. Single Polymer Ratchet Model
 - Stochastic Simulations (Gillespie Algorithm)
 - Continuous Space Mathematical Model Results:
 - Average (Ratchet) Position ∼ Biased Brownian Motion (Diffusion with Drift)
 - Gap Distance → Steady State, Exponential Distribution

Conclusions

Summary

In This Talk:

- 1. Single Polymer Growth Model (No Barrier)
- 2. Single Polymer Ratchet Model
- 3. N Polymer Bundle Ratchet Model
 - Stochastic Simulations (Gillespie Algorithm)
 - Increasing Number of Polymers in the Bundle:
 - Allows Bundle to "Push Faster"
 - Decreases the Mean Minimum Gap Distance
 - For More Information: [Cole and Qian, 2011]

Selected References

Cole, C. L. and Qian, H. (2011).

The brownian ratchet revisited: Diffusion formalism, polymer-barrier attractions, and multiple filamentous bundle growth.

Biophysical Reviews and Letters, 6(1-2):59-79.

Qian, H. (2004).

A stochastic analysis of a brownian ratchet model for actin-based motility and integrate-and-firing neurons.

MCB: Mol. & Cell. Biomech., 1:267-278.

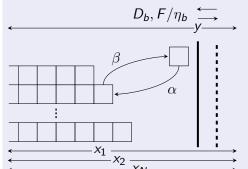
The End

Thank You!

- PLU Math Department
- Audience

Questions?

$$\frac{\partial f(\lbrace x_i \rbrace, y, t)}{\partial t} = \sum_{k=1}^{N} \left(D_a \frac{\partial^2 f}{\partial x_k^2} - V_a \frac{\partial f}{\partial x_k} \right) + D_b \frac{\partial^2 f}{\partial x_k^2} + \frac{F}{\eta_b} \frac{\partial f}{\partial y}$$
(2)



Strategy: Decouple via Change of Variables:

$$\mathbf{\Delta}_{i} = \mathbf{Y} - \mathbf{X}_{i},$$

$$\mathbf{Z} = \frac{D_{b} \sum_{j=1}^{N} \mathbf{X}_{j} + D_{a} \mathbf{Y}}{ND_{b} + D_{a}}$$

Joint pdf for all $\{\Delta_i(t)\}$, $\mathbf{Y}(t)$: $f(\{\xi_i\}, z, t)$

$$\frac{\partial f(\lbrace x_i \rbrace, y, t)}{\partial t} = \sum_{k=1}^{N} \left(D_a \frac{\partial^2 f}{\partial x_k^2} - V_a \frac{\partial f}{\partial x_k} \right) + D_b \frac{\partial^2 f}{\partial^2 y} + \frac{F}{\eta_b} \frac{\partial f}{\partial y}$$
(2)

$$\frac{\partial \phi(\{\xi_i\}, t)}{\partial t} = \sum_{i,j}^{N} \left(D_a \delta_{ij} + D_b \right) \frac{\partial^2 \phi}{\partial \xi_i \partial \xi_j} + \left(V_a + \frac{F}{\eta_b} \right) \sum_{i=1}^{N} \frac{\partial \phi}{\partial \xi_i}$$
(3a)

$$\frac{\partial P_{\mathbf{Z}}(z,t)}{\partial t} = \frac{D_b D_a}{N D_b + D_a} \frac{\partial^2 P_{\mathbf{Z}}}{\partial z^2} - \left(\frac{N D_b V_a - D_a F / \eta_b}{N D_b + D_a}\right) \frac{\partial P_{\mathbf{Z}}}{\partial z}$$
(3b)

$$f(\lbrace x_i\rbrace,y,t)=f(\lbrace \xi_i\rbrace,z,t)$$

Decoupled:

$$= \phi(\{\xi_i\}, t) P_{\mathbf{Z}}(z, t)$$

Geometric Constraints:

- For (2): $X_i(t) \leq Y(t)$
- For (3a): $\Delta_i(t) \geq 0$

N Polymer Ratchet: Gap Distance

Gap Distances Approach Steady State:

$$\phi(\{\xi_i\}) = \epsilon^N \exp\left(-\epsilon \sum_{i=1}^N \xi_i\right), \qquad \epsilon = \frac{V_a + F/\eta_b}{ND_b + D_a}, \qquad P_{\Delta_{(1)}}(x) = N\epsilon e^{-N\epsilon x}$$

 $\{\Delta_i\}$: Gaps are Identical, Exponentially Distributed

•
$$\mu = \frac{1}{\epsilon} = \frac{ND_b + D_a}{V_a + F/\eta_b}$$

$$\begin{aligned} & \Delta_{(1)} = \min\{\Delta_i\} \\ & \text{Exponentially Distributed} \\ & \bullet \ \mu = \frac{1}{N\epsilon} = \frac{D_b + D_a/N}{V_a + F/n_b} \end{aligned}$$

N Polymer Ratchet: Gap Distance

Gap Distances Approach Steady State:

$$\phi(\{\xi_i\}) = \epsilon^N \exp\left(-\epsilon \sum_{i=1}^N \xi_i\right), \qquad \epsilon = \frac{V_a + F/\eta_b}{ND_b + D_a}, \qquad P_{\Delta_{(1)}}(x) = N\epsilon e^{-N\epsilon x}$$

 $\{\Delta_i\}$: Gaps are Identical, Exponentially Distributed

•
$$\mu = \frac{1}{\epsilon} = \frac{ND_b + D_a}{V_a + F/\eta_b}$$

 $\Delta_{(1)} = \min\{\Delta_i\}$ Exponentially Distributed

•
$$\mu = \frac{1}{N\epsilon} = \frac{D_b + D_a/N}{V_a + F/\eta_b}$$

N Polymer Ratchet: Average Position

Average Position: Diffusion with Drift

$$\frac{\partial P_{\mathbf{Z}}(z,t)}{\partial t} = D_{z_N} \frac{\partial^2 P_{\mathbf{Z}}}{\partial z^2} - V_{z_N} \frac{\partial P_{\mathbf{Z}}}{\partial z}$$

Solution:

•
$$P_{\mathbf{Z}}(z,t) = \frac{1}{\sqrt{4\pi D_{z_N} t}} e^{-\frac{(z-V_{z_N} t)^2}{4D_{z_N} t}}$$

With:

•
$$D_{z_N} = rac{D_a D_b}{N D_b + D_a}$$
,
 $V_{z_N} = rac{N D_b V_a - D_a F / \eta_b}{N D_b + D_a}$

Normal Distribution

Mean:

$$\mu = V_{z_N} t$$

• Variance:

$$\sigma^2 = 2D_{z_N}t$$

Diffusion Formalism: Single Polymer Ratchet Full Time-Dependent Gap Distance Solution

Initial Boundary Value Problem for $(x \ge 0, t > 0)$:

$$\bullet \quad \frac{\partial P_{\Delta}(x,t)}{\partial t} = D_{\delta} \frac{\partial^2 P_{\Delta}}{\partial x^2} + V_{\delta} \frac{\partial P_{\Delta}}{\partial x}$$

$$P_{\Delta}(x,0) = \delta(x)$$

•
$$D_{\delta} \frac{\partial P_{\Delta}(0,t)}{\partial x} + V_{\delta} P_{\Delta}(0,t) = 0$$

•
$$\lim_{x \to \infty} P_{\Delta}(x, t) = 0$$

 $\lim_{x \to \infty} \frac{\partial P_{\Delta}(x, t)}{\partial x} = 0$

Solution Via New Transform Method of Fokas

$$P_{\Delta}(x,t) = \frac{V_{\delta}}{D_{\delta}} e^{-\frac{V_{\delta}x}{D_{\delta}}}$$

$$+e^{-\frac{V_{\delta^{\times}}}{2D_{\delta}}}e^{-\left(\frac{V_{\delta}}{D_{\delta}}\right)^{2}\frac{t}{4D_{\delta}}}\int_{0}^{\infty}\frac{ze^{-\frac{z^{2}t}{4D_{\delta}}}\left(z\cos(zx/2)-\frac{V_{\delta}}{D_{\delta}}\sin(zx/2)\right)dz}{\pi\left(\left(\frac{V_{\delta}}{D_{\delta}}\right)^{2}+z^{2}\right)}$$

