N Polymer Model

Conclusion 0 00

The Brownian Ratchet Revisited: Multiple Filamentous Bundle Growth

Christine Lind Cole & Hong Qian

Department of Applied Mathematics, University of Washington

 $clind @amath.washington.edu \qquad qian @amath.washington.edu \\$

June 15, 2012

N Polymer Model

Conclusion 0 00

Brownian Ratchet (BR)

Presentation Outline:

- 1. Introduction
 - Motivation: Actin-Based Motility of *Listeria*
 - BR Model for Simplest Case: Single Polymer & Fluctuating Barrier
- 2. N Polymer Ratchet Model
 - "Pattern" Arises
 - (Something Nonlinear)
- 3. Summary/Acknowledgments
 - Additional References

N Polymer Model

Conclusion 0 00

Motivation: Actin-Based Motility

Listeria Monocytogenes:

http://textbookofbacteriology.net/Listeria_2.html

Bacteria that Causes *Listeriosis* Usually Only Flu-Like Symptoms,

Fall 2011 Outbreak:

- 146 Cases Reported
- 30 Deaths, 1 Miscarriage

http://www.cdc.gov/listeria/outbreaks/cantaloupes-

At body temperature:

jensen-farms/index.html

Listeria is propelled by polymerization of actin filaments.

N Polymer Model

Conclusion 0 00

Motivation: Actin-Based Motility

Actin-Based Motility of Listeria (Click for Movie)

Image Source: Tilney & Portnoy 1989, *J Cell Biol* 109:1597-1608 Movie Source: Theriot & Portnoy: http://cmgm.stanford.edu/theriot/movies.htm

Motivation: Actin-Based Motility of Listeria

Experimental Observations: Single Particle Tracking Kuo & McGrath Measured *Listeria* Trajectory (Red)

Image Source: [Kuo and McGrath, 2000]

- Suggesting: Coordinated Growth of Actin Polymers
- 2. MSD Smaller than Expected
 - (Decreased Fluctuation)

Motivation: Actin-Based Motility of Listeria

Experimental Observations: Single Particle Tracking

Kuo & McGrath Measured *Listeria* Trajectory (Red)

Image Source: [Kuo and McGrath, 2000]

- Suggesting: Coordinated Growth of Actin Polymers
- 2. MSD Smaller than Expected
 - (Decreased Fluctuation)

Motivation: Actin-Based Motility of Listeria

Experimental Observations: Single Particle Tracking Kuo & McGrath Measured *Listeria* Trajectory (Red)

Image Source: [Kuo and McGrath, 2000]

- 1. "Stepping" Behavior
 - Suggesting: Coordinated Growth of Actin Polymers
- 2. MSD Smaller than Expected
 - (Decreased Fluctuation)

N Polymer Model

Conclusion 0 00

Motivation: Actin-Based Motility

Actin-Based Motility of Listeria

Motivates Study of:

- Polymerization-Driven Motion of a Fluctuating Barrier
- Mathematical Framework:
 - Diffusion Formalism Brownian Ratchet Model
 - Building On Simplest Case: Single Polymer Ratchet

N Polymer Model

Conclusion 0 00

Single Polymer Ratchet

What is a Single Polymer Ratchet?

Component 1:

Polymer

- α, β: Adding/Subtracting Rates
- δ : Monomer Length
- α > β: Polymer Grows (On Average)

N Polymer Model

Conclusion 0 00

Single Polymer Ratchet

What is a Single Polymer Ratchet?

Component 2:

Fluctuating Barrier

- Biased Brownian Motion
- D_b: Fluctuation
- $-\frac{F}{\eta_b}$: Drift

N Polymer Model

Conclusion 0 00

Single Polymer Ratchet

What is a Single Polymer Ratchet?

When Components Interact:

- Barrier Motion
 "blocked" by Polymer
- Polymer Growth "blocked" by Barrier

N Polymer Model

Conclusion 0 00

Single Polymer Ratchet

What is a Single Polymer Ratchet?

When Components Interact: If Polymerization is Fast:

- Barrier Moves Far Enough
- Polymer *Immediately* Grows
- Blocking Backward Fluctuation of Barrier

Barrier is "Ratcheted" Forward

N Polymer Model

Conclusion 0 00

Introduction

Motivation: Actin Based Motility Diffusion Formalism for a Single Polymer Ratchet

N Polymer Model

N Polymer Bundle (No Barrier) N Polymer Bundle with a Moving Barrier (Ratchet)

Conclusion

Summary Acknowledgments & References

N Polymer Model

Conclusion 0 00

Single Polymer (No Barrier)

Random Variable $\mathbf{X}(t)$: Position of Polymer Tip $\frac{\partial P_{\mathbf{X}}(x,t)}{\partial t} = \alpha P_{\mathbf{X}}(x - \Delta x, t) + \beta P_{\mathbf{X}}(x + \Delta x, t) - (\alpha + \beta) P_{\mathbf{X}}(x, t)$ Biased Random Walk Model В • $P_{\mathbf{X}}(x,t) = \operatorname{Prob}\{\mathbf{X}(t) = x\}$ (Spatially Discrete) α Spatially Continuous Model: Λx • Taylor Expand in x...

N Polymer Model

Conclusion 0 00

Single Polymer (No Barrier)

Random Variable $\mathbf{X}(t)$: Position of Polymer Tip

 $\frac{\partial P_{\mathbf{X}}(x,t)}{\partial t} = \alpha P_{\mathbf{X}}(x - \Delta x, t) + \beta P_{\mathbf{X}}(x + \Delta x, t) - (\alpha + \beta) P_{\mathbf{X}}(x, t)$ $\frac{\partial P_{\mathbf{X}}(x,t)}{\partial t} = D_{a} \frac{\partial^{2} P_{\mathbf{X}}(x,t)}{\partial x^{2}} - V_{a} \frac{\partial P_{\mathbf{X}}(x,t)}{\partial x}$

Biased Brownian Motion Model

- $P_{\mathbf{X}}(x,t) =$ $\operatorname{Prob}\{x < \mathbf{X}(t) \le x + dx\}$
- (Spatially Continuous) Diffusion with Drift

$$V_a = \lim_{\Delta x \to 0} (\alpha - \beta) \Delta x$$

N Polymer Model

Conclusion 0 00

Barrier (No Polymer)

N Polymer Model

Conclusion 0 00

Single Polymer Ratchet

Diffusion Formalism Model: [Qian, 2004]

N Polymer Model

Conclusion 0 00

Single Polymer Ratchet

Diffusion Formalism Model: [Qian, 2004]

X-

$$\frac{\partial P_{\mathbf{X}\mathbf{Y}}(\mathbf{x}, \mathbf{y}, t)}{\partial t} = D_a \frac{\partial^2 P_{\mathbf{X}\mathbf{Y}}}{\partial \mathbf{x}^2} + D_b \frac{\partial^2 P_{\mathbf{X}\mathbf{Y}}}{\partial \mathbf{y}^2} - V_a \frac{\partial P_{\mathbf{X}\mathbf{Y}}}{\partial \mathbf{x}} + \frac{F}{\eta_b} \frac{\partial P_{\mathbf{X}\mathbf{Y}}}{\partial \mathbf{y}} \quad (1)$$

$$\xrightarrow{F}{\eta_b}, D_b$$
Strategy: Decouple System
Introduce:
$$\bullet \, \mathbf{\Delta}(t)$$
: Gap Distance
$$\bullet \, \mathbf{Z}(t)$$
: Average Position
Change of Variables:
$$\bullet \, \mathbf{\Delta} = \mathbf{Y} - \mathbf{X}, \, \mathbf{Z} = \frac{D_b \mathbf{X} + D_a \mathbf{Y}}{D_b + D_a}$$

N Polymer Model

Conclusion 0 00

Single Polymer Ratchet

Diffusion Formalism Model: [Qian, 2004]

$$\frac{\partial P_{\mathbf{X}\mathbf{Y}}(x,y,t)}{\partial t} = D_{a}\frac{\partial^{2} P_{\mathbf{X}\mathbf{Y}}}{\partial x^{2}} + D_{b}\frac{\partial^{2} P_{\mathbf{X}\mathbf{Y}}}{\partial y^{2}} - V_{a}\frac{\partial P_{\mathbf{X}\mathbf{Y}}}{\partial x} + \frac{F}{\eta_{b}}\frac{\partial P_{\mathbf{X}\mathbf{Y}}}{\partial y}$$
(1)

$$\frac{\partial P_{\Delta}(\Delta, t)}{\partial t} = D_{\delta} \frac{\partial^2 P_{\Delta}}{\partial \Delta^2} + V_{\delta} \frac{\partial P_{\Delta}}{\partial \Delta}, \quad \Delta \ge 0$$
(2a)

$$\frac{\partial P_{\mathbf{Z}}(z,t)}{\partial t} = D_{z} \frac{\partial^{2} P_{\mathbf{Z}}}{\partial z^{2}} - V_{z} \frac{\partial P_{\mathbf{Z}}}{\partial z}, \quad -\infty < z < +\infty$$
(2b)

$$D_{\delta} = D_b + D_a, V_{\delta} = V_a + F/\eta_b$$
$$D_z = \frac{D_a D_b}{D_b + D_a}, V_z = \frac{D_b V_a - D_a F/\eta_b}{D_b + D_a}$$

- (1) Constraint: $\mathbf{X}(t) \leq \mathbf{Y}(t)$
- (2a) Constraint: $\mathbf{\Delta}(t) \geq 0$

N Polymer Model

Conclusion 0 00

Single Polymer Ratchet

Diffusion Formalism Model: [Qian, 2004]

$$\frac{\partial P_{\mathbf{X}\mathbf{Y}}(x,y,t)}{\partial t} = D_a \frac{\partial^2 P_{\mathbf{X}\mathbf{Y}}}{\partial x^2} + D_b \frac{\partial^2 P_{\mathbf{X}\mathbf{Y}}}{\partial y^2} - V_a \frac{\partial P_{\mathbf{X}\mathbf{Y}}}{\partial x} + \frac{F}{\eta_b} \frac{\partial P_{\mathbf{X}\mathbf{Y}}}{\partial y}$$
(1)

$$\frac{\partial P_{\Delta}(\Delta, t)}{\partial t} = D_{\delta} \frac{\partial^2 P_{\Delta}}{\partial \Delta^2} + V_{\delta} \frac{\partial P_{\Delta}}{\partial \Delta}, \quad \Delta \ge 0$$
(2a)

$$\frac{\partial P_{\mathbf{Z}}(z,t)}{\partial t} = D_{z} \frac{\partial^{2} P_{\mathbf{Z}}}{\partial z^{2}} - V_{z} \frac{\partial P_{\mathbf{Z}}}{\partial z}, \quad -\infty < z < +\infty$$
(2b)

$$D_{\delta} = D_b + D_a, V_{\delta} = V_a + F/\eta_b$$
$$D_z = \frac{D_a D_b}{D_b + D_a}, V_z = \frac{D_b V_a - D_a F/\eta_b}{D_b + D_a}$$

- (1) Constraint: $\mathbf{X}(t) \leq \mathbf{Y}(t)$
- (2a) Constraint: $\mathbf{\Delta}(t) \geq 0$

N Polymer Model

Conclusion 0 00

Single Polymer Ratchet: Average Position

Avg. Position: Diffusion with Drift (Biased Brownian Motion)

$$\begin{array}{lll} \frac{\partial P_{\mathbf{Z}}(z,t)}{\partial t} &=& D_{z} \frac{\partial^{2} P_{\mathbf{Z}}}{\partial z^{2}} - V_{z} \frac{\partial P_{\mathbf{Z}}}{\partial z}, \qquad -\infty < z < \infty, \\ P_{\mathbf{Z}}(z,0) &=& \delta(z) \end{array}$$

Solution:

•
$$P_{\mathsf{Z}}(z,t) = \frac{1}{\sqrt{4\pi D_z t}} e^{-\frac{(z-V_z t)^2}{4D_z t}}$$

With:

•
$$D_z = \frac{D_a D_b}{D_b + D_a}$$
, $V_z = \frac{D_b V_a - D_a F/\eta_b}{D_b + D_a}$

Normal Distribution

• Mean:

$$\mu = V_z t$$

• Variance: $\sigma^2 = 2D_z t$

N Polymer Model

Conclusion 0 00

Single Polymer Ratchet

Diffusion Formalism Model: [Qian, 2004]

$$\frac{\partial P_{\mathbf{X}\mathbf{Y}}(x,y,t)}{\partial t} = D_a \frac{\partial^2 P_{\mathbf{X}\mathbf{Y}}}{\partial x^2} + D_b \frac{\partial^2 P_{\mathbf{X}\mathbf{Y}}}{\partial y^2} - V_a \frac{\partial P_{\mathbf{X}\mathbf{Y}}}{\partial x} + \frac{F}{\eta_b} \frac{\partial P_{\mathbf{X}\mathbf{Y}}}{\partial y}$$
(1)

$$\frac{\partial P_{\Delta}(\Delta, t)}{\partial t} = D_{\delta} \frac{\partial^2 P_{\Delta}}{\partial \Delta^2} + V_{\delta} \frac{\partial P_{\Delta}}{\partial \Delta}, \quad \Delta \ge 0$$
(2a)

$$\frac{\partial P_{\mathbf{Z}}(z,t)}{\partial t} = D_{z} \frac{\partial^{2} P_{\mathbf{Z}}}{\partial z^{2}} - V_{z} \frac{\partial P_{\mathbf{Z}}}{\partial z}, \quad -\infty < z < +\infty$$
(2b)

$$D_{\delta} = D_b + D_a, V_{\delta} = V_a + F/\eta_b$$
$$D_z = \frac{D_a D_b}{D_b + D_a}, V_z = \frac{D_b V_a - D_a F/\eta_b}{D_b + D_a}$$

- (1) Constraint: $\mathbf{X}(t) \leq \mathbf{Y}(t)$
- (2a) Constraint: $\mathbf{\Delta}(t) \geq 0$

N Polymer Model

Conclusion 0 00

Single Polymer Ratchet: Gap Distance

Gap Distance \rightarrow Steady State (Qualitative Argument):

$$\frac{\partial P_{\Delta}(\Delta, t)}{\partial t} = D_{\delta} \frac{\partial^2 P_{\Delta}}{\partial \Delta^2} + V_{\delta} \frac{\partial P_{\Delta}}{\partial \Delta}, \quad \Delta \ge 0$$

Subject to:

- No-Flux B.C. at $\Delta = 0$
- Vanishing C.'s at $\Delta = \infty$

Diffusion, "+": Drift \rightarrow Boundary Conditions: Can't "Leak Out"

N Polymer Model

Conclusion 0 00

Single Polymer Ratchet: Gap Distance

Gap Distance \rightarrow Steady State (Qualitative Argument):

$$\frac{\partial P_{\Delta}(\Delta, t)}{\partial t} = D_{\delta} \frac{\partial^2 P_{\Delta}}{\partial \Delta^2} + V_{\delta} \frac{\partial P_{\Delta}}{\partial \Delta}, \quad \Delta \ge 0$$

Subject to:

- No-Flux B.C. at $\Delta = 0$
- Vanishing C.'s at $\Delta = \infty$

Diffusion, "+": Drift \rightarrow Boundary

Conditions: Can't "Leak Out"

UNIVERSITY of WASHINGTON

Single Polymer Ratchet: Gap Distance

Full Time-Dependent Gap Distance Solution:

Initial Boundary Value Problem for $(\Delta \ge 0, t > 0)$:

•
$$\frac{\partial P_{\Delta}(\Delta, t)}{\partial t} = D_{\delta} \frac{\partial^2 P_{\Delta}}{\partial \Delta^2} + V_{\delta} \frac{\partial P_{\Delta}}{\partial \Delta}$$

•
$$P_{\Delta}(\Delta, 0) = \delta(\Delta)$$

•
$$D_{\delta} \frac{\partial P_{\Delta}(0,t)}{\partial \Delta} + V_{\delta} P_{\Delta}(0,t) = 0$$

UNIVERSITY of WASHINGTON

$$\lim_{\Delta \to \infty} P_{\Delta}(\Delta, t) = 0 \lim_{\Delta \to \infty} \frac{\partial P_{\Delta}(\Delta, t)}{\partial \Delta} = 0$$

New Unified Transform Method of Fokas [Fokas, 2002], [Cole, 2011]:

$$P_{\Delta}(\Delta, t) = \frac{V_{\delta}}{D_{\delta}} e^{-\frac{V_{\delta}\Delta}{D_{\delta}}} + e^{-\frac{V_{\delta}\Delta}{2D_{\delta}}} e^{-\left(\frac{V_{\delta}}{D_{\delta}}\right)^{2} \frac{t}{4D_{\delta}}} \int_{0}^{\infty} \frac{k e^{-\frac{k^{2}t}{4D_{\delta}}} \left(k \cos(k\Delta/2) - \frac{V_{\delta}}{D_{\delta}} \sin(k\Delta/2)\right) dk}{\pi \left(\left(\frac{V_{\delta}}{D_{\delta}}\right)^{2} + k^{2}\right)}$$

Single Polymer Ratchet: Gap Distance

Full Time-Dependent Gap Distance Solution:

Initial Boundary Value Problem for $(\Delta \ge 0, t > 0)$:

•
$$\frac{\partial P_{\Delta}(\Delta, t)}{\partial t} = D_{\delta} \frac{\partial^2 P_{\Delta}}{\partial \Delta^2} + V_{\delta} \frac{\partial P_{\Delta}}{\partial \Delta}$$

• $P_{\Delta}(\Delta, 0) = \delta(\Delta)$

•
$$D_{\delta} \frac{\partial P_{\Delta}(0,t)}{\partial \Delta} + V_{\delta} P_{\Delta}(0,t) = 0$$

UNIVERSITY of WASHINGTON

$$\lim_{\Delta \to \infty} P_{\Delta}(\Delta, t) = 0 \lim_{\Delta \to \infty} \frac{\partial P_{\Delta}(\Delta, t)}{\partial \Delta} = 0$$

New Unified Transform Method of Fokas [Fokas, 2002], [Cole, 2011]:

$$P_{\Delta}(\Delta, t) = \frac{V_{\delta}}{D_{\delta}} e^{-\frac{V_{\delta}\Delta}{D_{\delta}}} + e^{-\frac{V_{\delta}\Delta}{2D_{\delta}}} e^{-\left(\frac{V_{\delta}}{D_{\delta}}\right)^{2} \frac{t}{4D_{\delta}}} \int_{0}^{\infty} \frac{ke^{-\frac{k^{2}t}{4D_{\delta}}} \left(k\cos(k\Delta/2) - \frac{V_{\delta}}{D_{\delta}}\sin(k\Delta/2)\right) dk}{\pi \left(\left(\frac{V_{\delta}}{D_{\delta}}\right)^{2} + k^{2}\right)}$$

N Polymer Model

Conclusion 0 00

APPLIED MATHEMATICS

Single Polymer Ratchet: Gap Distance

$$\begin{split} P_{\Delta_{ss}}(\Delta): \text{ Steady State Gap Distance} \\ 0 &= D_{\delta} \frac{d^2 P_{\Delta_{ss}}}{d\Delta^2} + V_{\delta} \frac{dP_{\Delta_{ss}}}{d\Delta}, \qquad \Delta \geq 0 \\ \bullet & D_{\delta} = (D_a + D_b) \\ \bullet & V_{\delta} = \left(V_a + \frac{F}{\eta_b}\right) \end{split} \qquad \begin{array}{l} \text{Steady State Distribution} \\ \bullet & \text{Exponential} \\ \hline P_{\Delta_{ss}}(\Delta) &= \frac{V_{\delta}}{D_{\delta}} e^{-\frac{V_{\delta}\Delta}{D_{\delta}}} \end{split}$$

N Polymer Model

Conclusion 0 00

Single Polymer Ratchet

Single Polymer Ratchet Summary

Average Position, $\boldsymbol{\mathsf{Z}}(t) \rightarrow$ Biased Brownian Motion

- Normal Distribution
- $\mu = V_z t$
- $\sigma^2 = 2D_z t$

Gap Distance, $\mathbf{\Delta}(t) \rightarrow$ Steady State:

Exponential Distribution

•
$$\mu = \frac{D_{\delta}}{V_{\delta}} = \frac{D_b + D_a}{V_a + F/\eta_b}$$

N Polymer Model

Conclusion 0 00

Single Polymer Ratchet

Single Polymer Ratchet Summary

Average Position, $\mathbf{Z}(t) \rightarrow \text{Bia}$ N Polymer Model:

- Normal Distribution
- $\mu = V_z t$
- $\sigma^2 = 2D_z t$

Gap Distance, $\mathbf{\Delta}(t)
ightarrow$ Steady

• Exponential Distribution

•
$$\mu = \frac{D_{\delta}}{V_{\delta}} = \frac{D_b + D_a}{V_a + F/\eta_b}$$

• More Realistic. Recall:

- *Listeria* is Propelled by *Network* of Actin Filaments
- Model Will Predict
 Observed Behavior:
 - Coordinated Polymer Growth (with barrier present)
 - Decreased Fluctuation (D_z deacreases with N)

N Polymer Model

Conclusion 0 00

Introduction

Motivation: Actin Based Motility Diffusion Formalism for a Single Polymer Ratchet

N Polymer Model N Polymer Bundle (No Barrier) N Polymer Bundle with a Moving Barrier (Ratchet)

Conclusion

Summary Acknowledgments & References

N Polymer Model

Conclusion 0 00

N Polymer Ratchet

What is an N Polymer Ratchet?

Component 1: Bundle of N Identical Polymers

N Polymer Model

Conclusion 0 00

N Polymer Ratchet

N Polymer Model

Conclusion 0 00

N Polymer Ratchet

What is an N Polymer Ratchet?

When Components Interact: Ratchet: Longest Polymer + Barrier

N Polymer Model

Conclusion 0 00

Introduction

Motivation: Actin Based Motility Diffusion Formalism for a Single Polymer Ratchet

N Polymer Model

N Polymer Bundle (No Barrier)

N Polymer Bundle with a Moving Barrier (Ratchet)

Conclusion

Summary Acknowledgments & References

N Polymer Model

Conclusion 0 00

N Polymer Bundle (No Barrier)

 $\mathbf{X}_{i}(t)$: Position of i^{th} Polymer Tip at Time t

$$\frac{\partial P_{\mathbf{X}_{i}}(x,t)}{\partial t} = D_{a} \frac{\partial^{2} P_{\mathbf{X}_{i}}(x,t)}{\partial x^{2}} - V_{a} \frac{\partial P_{\mathbf{X}_{i}}(x,t)}{\partial x}$$

Each Individual Polymer:

- Normal Distribution $\mu = V_a t$, $\sigma^2 = 2D_a t$
- pdf: $P_{\mathbf{X}_i}(x,t) =$ $f_{\mathbf{X}}(x,t) = \frac{1}{\sqrt{4\pi D_a t}} e^{-\frac{(x-V_a t)^2}{4D_a t}}$

• *cdf*:

$$F_{\mathbf{X}}(x,t) = \int_{-\infty}^{x} f_{\mathbf{X}}(x,t) dx$$

N Polymer Model

Conclusion 0 00

N Polymer Bundle (No Barrier)

 $\mathbf{X}_{i}(t)$: Position of i^{th} Polymer Tip at Time t

$$\frac{\partial P_{\mathbf{X}_{i}}(x,t)}{\partial t} = D_{a} \frac{\partial^{2} P_{\mathbf{X}_{i}}(x,t)}{\partial x^{2}} - V_{a} \frac{\partial P_{\mathbf{X}_{i}}(x,t)}{\partial x}$$

Each *Individual* Polymer:

- Normal Distribution $\mu = V_a t$, $\sigma^2 = 2D_a t$
- pdf: $P_{\mathbf{X}_{i}}(x,t) = f_{\mathbf{X}}(x,t) = \frac{1}{\sqrt{4\pi D_{a}t}} e^{-\frac{(x-V_{a}t)^{2}}{4D_{a}t}}$

• *cdf*:

$$F_{\mathbf{X}}(x,t) = \int_{-\infty}^{x} f_{\mathbf{X}}(x,t) dx$$

N Polymer Model

Conclusion 0 00

N Polymer Bundle (No Barrier)

N Polymer Model

Conclusion 0 00

N Polymer Bundle (No Barrier)

N Polymer Model

Conclusion 0 00

N Polymer Bundle (No Barrier)

 $\mathbf{X}^{(k)}(t)$: Position of k^{th} Longest Polymer Tip at Time t

Instead of Tracking Individual Polymers

- Order Them By Length
- Define:
 X^(k)(t): Position of kth Longest Polymer:

 $X^{(1)}(t) \ge X^{(2)}(t) \ge ... \ge X^{(k-1)}(t) \ge X^{(k)}(t) \ge X^{(k+1)}(t) \ge ... \ge X^{(N-1)}(t) \ge X^{(N)}(t)$

Conclusion 0 00

N Polymer Bundle (No Barrier)

 $\mathbf{X}^{(k)}(t)$: Position of k^{th} Longest Polymer Tip at Time t

$${\sf X}^{(1)}(t) \geq {\sf X}^{(2)}(t) \geq ... \geq {\sf X}^{(k-1)}(t) \geq {\sf X}^{(k)}(t) \geq {\sf X}^{(k+1)}(t) \geq ... \geq {\sf X}^{(N-1)}(t) \geq {\sf X}^{(N)}(t)$$

 $\mathbf{X}^{(k)}(t)$: k^{th} Longest Polymer: Order Statistics:

• pdf: $f_{\mathbf{X}^{(k)}}(x,t) = \frac{N!}{(k-1)!(N-k)!} F_{\mathbf{X}}(x,t)^{N-k} \left[1 - F_{\mathbf{X}}(x,t)\right]^{k-1} f_{\mathbf{X}}(x,t)$

Qualitatively "Biased-Diffusion-Like:"

- Single Traveling Peak
- Increasing Width

N Polymer Model

Conclusion 0 00

UNIVERSITY of WASHINGTON

N Polymer Bundle (No Barrier)

Example: 3 Polymers Starting Out Even (Same Length)

N Polymer Model

Conclusion 0 00

APPLIED MATHEMATICS

N Polymer Bundle (No Barrier)

N Polymer Model

Conclusion 0 00

APPLIED MATHEMATICS

N Polymer Bundle (No Barrier)

Longest Polymer, $\mathbf{X}^{(1)}(t)$

We Can Show:

• cdf Satisfies a Nonlinear Diffusion Equation:

$$\frac{\partial F_{\mathbf{X}^{(1)}}(x,t)}{\partial t} = D_{a} \frac{\partial^{2} F_{\mathbf{X}^{(1)}}(x,t)}{\partial x^{2}} - q(x,t) \frac{\partial F_{\mathbf{X}^{(1)}}(x,t)}{\partial x}$$

• "Drift" Rate:

$$q(x,t) = V_{a} + \frac{D_{a}(N-1)}{NF_{\mathbf{X}^{(1)}}(x,t)} \frac{\partial F_{\mathbf{X}^{(1)}}(x,t)}{\partial x}$$

N Polymer Model

Conclusion 0 00

N Polymer Bundle (No Barrier)

Longest Polymer, $\mathbf{X}^{(1)}(t)$

As Promised:

Something Nonlinear \checkmark

We Can Show:

• cdf Satisfies a Nonlinear Diffusion Equation:

$$\frac{\partial F_{\mathbf{X}^{(1)}}(x,t)}{\partial t} = D_{a} \frac{\partial^{2} F_{\mathbf{X}^{(1)}}(x,t)}{\partial x^{2}} - q(x,t) \frac{\partial F_{\mathbf{X}^{(1)}}(x,t)}{\partial x}$$

• "Drift" Rate:

$$q(x,t) = V_{a} + \frac{D_{a}(N-1)}{NF_{\mathbf{X}^{(1)}}(x,t)} \frac{\partial F_{\mathbf{X}^{(1)}}(x,t)}{\partial x}$$

N Polymer Model

Conclusion 0 00

Introduction

Motivation: Actin Based Motility Diffusion Formalism for a Single Polymer Ratchet

N Polymer Model

N Polymer Bundle (No Barrier) N Polymer Bundle with a Moving Barrier (Ratchet)

Conclusion

Summary Acknowledgments & References

N Polymer Model

Conclusion 0 00

N Polymer Ratchet

Bundle Ratchet:

N Polymer Model

Conclusion 0 00

N Polymer Ratchet

Bundle Ratchet:

N Polymer Model

Conclusion 0 00

N Polymer Ratchet

N Polymer Model

Conclusion 0 00

N Polymer Ratchet

Joint *pdf* for all $\{\Delta_i(t)\}, \mathbf{Z}(t): f(\{\xi_i\}, z, t)$

$$\frac{\partial f(\{x_i\}, y, t)}{\partial t} = \sum_{k=1}^{N} \left(D_s \frac{\partial^2 f}{\partial x_k^2} - V_s \frac{\partial f}{\partial x_k} \right) + D_b \frac{\partial^2 f}{\partial^2 y} + \frac{F}{\eta_b} \frac{\partial f}{\partial y}$$
(3)

$$\frac{\partial \phi(\{\xi_i\}, t)}{\partial t} = \sum_{i,j}^{N} \left(D_a \delta_{ij} + D_b \right) \frac{\partial^2 \phi}{\partial \xi_i \partial \xi_j} + \left(V_a + \frac{F}{\eta_b} \right) \sum_{i=1}^{N} \frac{\partial \phi}{\partial \xi_i} \qquad (4a)$$
$$\frac{\partial P_{\mathbf{Z}}(z, t)}{\partial t} = \frac{D_b D_a}{N D_b + D_a} \frac{\partial^2 P_{\mathbf{Z}}}{\partial z^2} - \left(\frac{N D_b V_a - D_a F / \eta_b}{N D_b + D_a} \right) \frac{\partial P_{\mathbf{Z}}}{\partial z} \qquad (4b)$$

$$f(\lbrace x_i \rbrace, y, t) = f(\lbrace \xi_i \rbrace, z, t)$$

Decoupled:
$$= \phi(\lbrace \xi_i \rbrace, t) P_{\mathsf{Z}}(z, t)$$

Geometric Constraints:

- For (3): $\mathbf{X}_i(t) \leq \mathbf{Y}(t)$
- For (4a): $\mathbf{\Delta}_i(t) \geq 0$

APPLIED MATHEMATICS

N Polymer Model

Conclusion 0 00

N Polymer Ratchet

Joint *pdf* for all $\{\Delta_i(t)\}, \mathbf{Z}(t): f(\{\xi_i\}, z, t)$

$$\frac{\partial f(\{x_i\}, y, t)}{\partial t} = \sum_{k=1}^{N} \left(D_{a} \frac{\partial^2 f}{\partial x_k^2} - V_{a} \frac{\partial f}{\partial x_k} \right) + D_{b} \frac{\partial^2 f}{\partial^2 y} + \frac{F}{\eta_b} \frac{\partial f}{\partial y}$$
(3)

$$\frac{\partial \phi(\{\xi_i\}, t)}{\partial t} = \sum_{i,j}^{N} \left(D_a \delta_{ij} + D_b \right) \frac{\partial^2 \phi}{\partial \xi_i \partial \xi_j} + \left(V_a + \frac{F}{\eta_b} \right) \sum_{i=1}^{N} \frac{\partial \phi}{\partial \xi_i} \qquad (4a)$$
$$\frac{\partial P_z(z, t)}{\partial t} = \frac{D_b D_a}{N D_b + D_a} \frac{\partial^2 P_z}{\partial z^2} - \left(\frac{N D_b V_a - D_a F / \eta_b}{N D_b + D_a} \right) \frac{\partial P_z}{\partial z} \qquad (4b)$$

 $f(\lbrace x_i \rbrace, y, t) = f(\lbrace \xi_i \rbrace, z, t)$ Decoupled: $= \phi(\lbrace \xi_i \rbrace, t) P_{\mathsf{Z}}(z, t)$ Geometric Constraints:

• For (3): $\mathbf{X}_i(t) \leq \mathbf{Y}(t)$

APPLIED MATHEMATICS

• For (4a): $\mathbf{\Delta}_i(t) \geq 0$

N Polymer Model

Conclusion 0 00

N Polymer Ratchet: Average Position

Avg. Position: Diffusion with Drift (Biased Brownian Motion)

$$\begin{array}{lll} \frac{\partial P_{\mathbf{Z}}(z,t)}{\partial t} &=& D_{z_{N}} \frac{\partial^{2} P_{\mathbf{Z}}}{\partial z^{2}} - V_{z_{N}} \frac{\partial P_{\mathbf{Z}}}{\partial z}, & -\infty < z < \infty, \\ P_{\mathbf{Z}}(z,0) &=& \delta(z) \end{array}$$

Solution:

•
$$P_{\mathbf{Z}}(z,t) = \frac{1}{\sqrt{4\pi D_{z_N} t}} e^{-\frac{(z-V_{z_N} t)^2}{4D_{z_N} t}}$$

With:

•
$$D_{z_N} = \frac{D_a D_b}{N D_b + D_a}$$
,
 $V_{z_N} = \frac{N D_b V_a - D_a F / \eta_b}{N D_b + D_a}$

Normal Distribution

• Mean:

$$\mu = V_{z_N} t$$

• Variance: $\sigma^2 = 2D_{z_N}t$

N Polymer Model

Conclusion 0 00

N Polymer Ratchet

Joint *pdf* for all $\{\Delta_i(t)\}, \mathbf{Z}(t): f(\{\xi_i\}, z, t)$

$$\frac{\partial f(\{x_i\}, y, t)}{\partial t} = \sum_{k=1}^{N} \left(D_a \frac{\partial^2 f}{\partial x_k^2} - V_a \frac{\partial f}{\partial x_k} \right) + D_b \frac{\partial^2 f}{\partial^2 y} + \frac{F}{\eta_b} \frac{\partial f}{\partial y}$$
(3)

$$\frac{\partial \phi(\{\xi_i\}, t)}{\partial t} = \sum_{i,j}^{N} \left(D_a \delta_{ij} + D_b \right) \frac{\partial^2 \phi}{\partial \xi_i \partial \xi_j} + \left(V_a + \frac{F}{\eta_b} \right) \sum_{i=1}^{N} \frac{\partial \phi}{\partial \xi_i} \qquad (4a)$$
$$\frac{\partial P_z(z, t)}{\partial t} = \frac{D_b D_a}{N D_b + D_a} \frac{\partial^2 P_z}{\partial z^2} - \left(\frac{N D_b V_a - D_a F / \eta_b}{N D_b + D_a} \right) \frac{\partial P_z}{\partial z} \qquad (4b)$$

 $f(\lbrace x_i \rbrace, y, t) = f(\lbrace \xi_i \rbrace, z, t)$ Decoupled: $= \phi(\lbrace \xi_i \rbrace, t) P_{\mathbf{Z}}(z, t)$ Geometric Constraints:

• For (3): $\mathbf{X}_i(t) \leq \mathbf{Y}(t)$

APPLIED MATHEMATICS

• For (4a): $\mathbf{\Delta}_i(t) \geq 0$

N Polymer Model

Conclusion 0 00

N Polymer Ratchet: Gap Distance

Can We Find Time-Dependent Solution?

$$\frac{\partial \phi(\{\xi_i\}, t)}{\partial t} = \sum_{i,j}^{N} \left(D_a \delta_{ij} + D_b \right) \frac{\partial^2 \phi}{\partial \xi_i \partial \xi_j} + \left(V_a + \frac{F}{\eta_b} \right) \sum_{i=1}^{N} \frac{\partial \phi}{\partial \xi_i}, \quad \{\xi_i\} \ge 0,$$

Subject to:

- No-Flux B.C. at each $\xi_i = 0$
- Vanishing C.'s at $\{\xi_i\} = \infty$

Not Separable \rightarrow Not Yet

Diffusion, "+": Drift \rightarrow Boundaries Conditions: Can't "Leak Out"

 $\mathsf{Gap}\ \mathsf{Distances} o \mathsf{Steady}\ \mathsf{State}$

N Polymer Model

Conclusion 0 00

N Polymer Ratchet: Gap Distance

Can We Find Time-Dependent Solution?

$$\frac{\partial \phi(\{\xi_i\},t)}{\partial t} = \sum_{i,j}^{N} \left(D_a \delta_{ij} + D_b \right) \frac{\partial^2 \phi}{\partial \xi_i \partial \xi_j} + \left(V_a + \frac{F}{\eta_b} \right) \sum_{i=1}^{N} \frac{\partial \phi}{\partial \xi_i}, \quad \{\xi_i\} \ge 0,$$

Subject to:

Not Separable \rightarrow Not Yet

- No-Flux B.C. at each $\xi_i = 0$
- Vanishing C.'s at $\{\xi_i\} = \infty$

Diffusion, "+": Drift \rightarrow Boundaries Conditions: Can't "Leak Out"

 $\mathsf{Gap}\ \mathsf{Distances} \to \mathsf{Steady}\ \mathsf{State}$

N Polymer Model

Conclusion 0 00

N Polymer Ratchet: Gap Distance

Gap Distances Steady State:

$$0 = \sum_{i,j}^{N} \left(D_{a} \delta_{ij} + D_{b} \right) \frac{\partial^{2} \phi_{ss}}{\partial \xi_{i} \partial \xi_{j}} + \left(V_{a} + \frac{F}{\eta_{b}} \right) \sum_{i=1}^{N} \frac{\partial \phi_{ss}}{\partial \xi_{i}}, \quad \{\xi_{i}\} \ge 0,$$

$$\phi_{ss}(\{\xi_{i}\}) = \epsilon^{N} \exp\left(-\epsilon \sum_{i=1}^{N} \xi_{i} \right), \qquad \epsilon = \frac{V_{a} + F/\eta_{b}}{ND_{b} + D_{a}}, \qquad P_{\Delta_{(1)}}(x) = N\epsilon e^{-N\epsilon x}$$

 $\{\Delta_i\}$: Gaps are Identical, Exponentially Distributed • $\mu_i = \frac{1}{\epsilon} = \frac{ND_b + D_a}{V_a + F/\eta_b}$ $\begin{aligned} \mathbf{\Delta}_{(1)} &= \min\{\mathbf{\Delta}_i\} \\ \text{Exponentially Distributed} \\ \bullet \ \mu_{(1)} &= \frac{1}{N\epsilon} = \frac{D_b + D_a/N}{V_a + F/\eta_b} \end{aligned}$

N Polymer Model

Conclusion 0 00

N Polymer Ratchet: Gap Distance

Gap Distances Steady State:

$$0 = \sum_{i,j}^{N} \left(D_a \delta_{ij} + D_b \right) \frac{\partial^2 \phi_{ss}}{\partial \xi_i \partial \xi_j} + \left(V_a + \frac{F}{\eta_b} \right) \sum_{i=1}^{N} \frac{\partial \phi_{ss}}{\partial \xi_i}, \quad \{\xi_i\} \ge 0,$$

$$P_{ss}(\{\xi_i\}) = \epsilon^N \exp\left(-\epsilon \sum_{i=1}^{N} \xi_i \right), \qquad \epsilon = \frac{V_a + F/\eta_b}{ND_b + D_a}, \qquad P_{\Delta_{(1)}}(x) = N\epsilon e^{-N\epsilon x}$$

 $\{\Delta_i\}$: Gaps are Identical, Exponentially Distributed • $\mu_i = \frac{1}{\epsilon} = \frac{ND_b + D_a}{V_a + E/n_b}$ $\begin{aligned} \mathbf{\Delta}_{(1)} &= \min{\{\mathbf{\Delta}_i\}}\\ \text{Exponentially Distributed}\\ \bullet \ \mu_{(1)} &= \frac{1}{N\epsilon} = \frac{D_b + D_a / N}{V_2 + F / n_b} \end{aligned}$

¢

N Polymer Model

Conclusion 0 00

N Polymer Ratchet: Gap Distance

 ϵ

Steady State:Gap Di:Gaps are Identical0 \Rightarrow Coordinated0Growth ofPolymers \checkmark $\phi_{ss}(\{\xi_i\}) = \epsilon^N \exp\left(-\epsilon \sum_{i=1}^N \xi_i\right),$

 $\{\Delta_i\}$: Gaps are Identical, Exponentially Distributed

•
$$\mu_i = \frac{1}{\epsilon} = \frac{ND_b + D_a}{V_a + F/\eta_b}$$

 $\mathbf{\Delta}_{(1)}$, Smallest Gap

• Gap Between Bundle and 0, Barrier!

$$= \frac{V_a + F/\eta_b}{ND_b + D_a}, \qquad P_{\mathbf{\Delta}_{(1)}}(x) = N\epsilon e^{-N\epsilon x}$$

 $\begin{aligned} \mathbf{\Delta}_{(1)} &= \min{\{\mathbf{\Delta}_i\}}\\ \text{Exponentially Distributed}\\ \bullet & \mu_{(1)} &= \frac{1}{N_{\epsilon}} = \frac{D_b + D_a / N}{V_c + F / n_c} \end{aligned}$

N Polymer Model

Conclusion 0 00

N Polymer Ratchet

Characterized By:

Either:

- Longest Polymer
- Barrier
- **X**⁽¹⁾(t), **Y**(t)

Or:

- Smallest Gap Distance
- Average Position
- Δ₍₁₎(t), Ζ(t)

N Polymer Model

Conclusion 0 00

N Polymer Ratchet

N Polymer Ratchet Pattern:

Average Position, $\mathbf{Z}(t) ightarrow$ Biased Brownian Motion

- Normal Distribution
- $\mu = V_{z_N}t$

•
$$\sigma^2 = 2D_{z_N}t$$

Min. Gap Distance, $\mathbf{\Delta}_{(1)}(t)
ightarrow$ Steady State:

• Exponential Distribution

•
$$\mu_{(1)} = \frac{D_b + (D_a/N)}{V_a + F/\eta_b}$$

N Polymer Model

Conclusion 0 00

N Polymer Ratchet

N Polymer Ratchet Pattern:

Average Position, $\mathbf{Z}(t)
ightarrow$ Bias L

- Normal Distribution
- $\mu = V_{z_N} t$
- $\sigma^2 = 2D_{z_N}t$

Min. Gap Distance, $\mathbf{\Delta}_{(1)}(t) \rightarrow \text{Increasing } N$:

• Exponential Distribution

•
$$\mu_{(1)} = \frac{D_b + (D_a/N)}{V_a + F/\eta_b}$$

N Polymer Ratchet Summary:

With Multiple Polymer Filaments:

$$D_{z_N} = \frac{D_b(D_a/N)}{D_b + (D_a/N)}$$
$$V_{z_N} = \frac{D_b V_a - (D_a/N)F/\eta_b}{D_b + (D_a/N)}$$

- Interaction with Barrier \rightarrow Polymers Grow Together \checkmark
- Decreases Mean Gap Distance
- Increases V_z (Drift)
- Decreases D_z (Fluctuation) \checkmark

Results From the Brownian Ratchet Model

By Incorporating N Identical Polymers:

Can Predict Observed Listeria Behavior:

- Coordinated Actin Polymerization
- Decreased Fluctuation of the Bacterium (Barrier)

Not just a Model for Listeria. Also:

- Other Actin-Based Motility Scenarios
- Molecular Motor "Pushing" a Barrier (Load) Along its Track

N Polymer Model

Conclusion ○ ●○

Acknowledgments

Thank You:

- Co-Author & Ph.D. Advisor:
 - Hong Qian, University of Washington
- Method of Fokas:
 - Katie Oliveras, Seattle University
 - Bernard Deconinck, University of Washington
- Comments and Suggestions on [Cole and Qian, 2011]:
 - Alex Mogilner, Mathematics, UC Davis
 - Anatoly Kolomeisky, Chemistry, Rice University
- Organizers of Mini-Symposium:
 - David J. Wollkind & Bonni Kealy, Washington State University
- Funding:
 - NSF VIGRE Grant (DMS9810726)

N Polymer Model

Conclusion ○ ●○

Questions?

Thank You:

- Co-Author & Ph.D. Advisor:
 - Hong Qian, University of Washington
- Method of Fokas:
 - Katie Oliveras, Seattle University
 - Bernard Deconinck, University of Washington
- Comments and Suggestions on [Cole and Qian, 2011]:
 - Alex Mogilner, Mathematics, UC Davis
 - Anatoly Kolomeisky, Chemistry, Rice University
- Organizers of Mini-Symposium:
 - David J. Wollkind & Bonni Kealy, Washington State University
- Funding:
 - NSF VIGRE Grant (DMS9810726)

N Polymer Model

Conclusion ○ ○●

Selected References

Cole, C. L. (2011).

Mathematical Models for Facilitated Diffusion and the Brownian Ratchet. PhD thesis, University of Washington, Seattle, WA.

Cole, C. L. and Qian, H. (2011).

The brownian ratchet revisited: Diffusion formalism, polymer-barrier attractions, and multiple filamentous bundle growth.

Biophysical Reviews and Letters, 6(1-2):59-79.

Fokas, A. S. (2002).

A new transform method for evolution partial differential equations. *IMA Journal of Applied Mathematics*, 67:559–590.

Kuo, S. C. and McGrath, J. L. (2000).

Steps and fluctuations of *listeria monocytogenes* during actin-based motility. *Nature*, 407:1026–1029.

Qian, H. (2004).

A stochastic analysis of a brownian ratchet model for actin-based motility and integrate-and-firing neurons.

MCB: Mol. & Cell. Biomech., 1:267-278.

Single Polymer Ratchet

Initial State of System:

Polymer Touching Barrier, Define Coordinates

Initial Conditions:

- Gap Distance is Zero: $P_{\Delta}(\Delta, 0) = \delta(\Delta)$
- Average Position is Zero: $P_{\mathbf{Z}}(z, 0) = \delta(z)$

APPLIED MATHEMATICS

N Polymer Ratchet

Initial State of System:

Each Polymer Touching Barrier, Define Coordinates

Initial Conditions:

- Gap Distances are Zero
- Average Position is Zero: $P_{\mathbf{Z}}(z, 0) = \delta(z)$

N Polymer Ratchet: Average Position

Define Stalling Force, F_N^* :

Value of the Force that "Stalls" the Drift:

$$V_{z_N} = \frac{ND_bV_a - D_aF/\eta_b}{ND_b + D_a}$$

• $F_N^* = N\eta_b D_b \frac{V_a}{D_a}$

Qualitatively:

F < *F*^{*}_N: Polymer Bundle Pushes Barrier

N Polymer Ratchet: Average Position

Define Stalling Force,
$$F_N^*$$
: F_N^* Scales with N :Value of the Force that "Stalls" the Drift:Bundle can Oppose
 N times External Force
of a Single Polymer! \checkmark $V_{z_N} = \frac{ND_bV_a - D_aF/\eta_b}{ND_b + D_a}$ Qualitatively:• $F_N^* = N\eta_b D_b \frac{V_a}{D_a}$ • $F < F_N^*$:
Polymer Bundle
Pushes Barrier

N Polymer Ratchet: Gap Distance

 $D_a = 4$, $V_a = 2$, $D_b = 2$, $F/\eta_b = 1$

UNIVERSITY of WASHINGTON

Observations:

 D_a

Adding Polymers to the Bundle:

- Increases Mean Gap Distance for Each Gap
- Decreases Mean Gap Distance for the Minimum Gap

UNIVERSITY of WASHINGTON

Observations:

 D_a

In Other Words,

Adding Polymers to the Bundle:

• Decreases Mean Gap Between Bundle and the Barrier

UNIVERSITY of WASHINGTON

N Polymer Ratchet: Gap Distance

Example: 2 Polymer Case

$$\begin{aligned} \frac{\partial \phi(\xi_1,\xi_2,t)}{\partial t} &= (D_a + D_b) \left(\frac{\partial^2 \phi}{\partial \xi_1 \partial \xi_1} + \frac{\partial^2 \phi}{\partial \xi_2 \partial \xi_2} \right) + 2D_b \frac{\partial^2 \phi}{\partial \xi_1 \partial \xi_2} \\ &+ \left(V_a + \frac{F}{\eta_b} \right) \left(\frac{\partial \phi}{\partial \xi_1} + \frac{\partial \phi}{\partial \xi_2} \right), \quad \{\xi_1,\xi_2\} \ge 0, \\ &= -\nabla \cdot J(\xi_1,\xi_2,t) \end{aligned}$$

"No-Flux" B.C.'s:

$$-J = -\begin{pmatrix} J_1 \\ J_2 \end{pmatrix} = \begin{pmatrix} (D_a + D_b) \frac{\partial \phi}{\partial \xi_1} + D_b \frac{\partial \phi}{\partial \xi_2} + (V_a + \frac{F}{\eta_b}) \phi \\ (D_a + D_b) \frac{\partial \phi}{\partial \xi_2} + D_b \frac{\partial \phi}{\partial \xi_1} + (V_a + \frac{F}{\eta_b}) \phi \end{pmatrix}, \quad J_1(0, \xi_2, t) = 0$$

