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What are Molecular Motors?
In General Terms:

Protein Molecules in the Cell that:
• Generate Forces

• Cause the Transport of Material
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What are Molecular Motors?

Two Specific Examples:

Muscle: http://www.bio.davidson.edu/people/midorcas/animalphysiology/websites/2011/Miller/Background.html

Kinesin: http://multimedia.mcb.harvard.edu/media.html
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Conventional Molecular Motors

Myosin

Muscle Contraction

http://www.embl.de/∼guenther/project muscleoscillations.html



Introduction Polymerization Model Polymerization Ratchet Conclusions

Conventional Molecular Motors

Kinesin

Intracellular Transport
Short Video Excerpt: Inner Life of the Cell

http://multimedia.mcb.harvard.edu/media.html
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Conventional Molecular Motors

Conventional Molecular Motors

http://www.bioch.ox.ac.uk/aspsite/index.asp?pageid=573

Move Along Polymer
Tracks

• myosin - actin
microfilaments

• kinesin - tubulin
microtubules



Introduction Polymerization Model Polymerization Ratchet Conclusions

Polymerization

Another Way to Cause Motion/Transport

Change the Length of the Polymers Themselves!

αp

βp

x

δ

• Polymerization:
Adding Subunits

• Depolymerization:
Subtracting Subunits

• (Subunits = Monomers)
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Polymerization Causing Cell Membrane Deformation

Sickle Cell Anemia: Sickle Hemoglobin Polymerization

!

Left: http://www.hopkinsmedicine.org/Medicine/sickle/patient/index.html Right: (My Dissertation)
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Depolymerization During Cell Division

Mitosis:
Depolymerization of Spindle Pulls Sister Chromatids Apart

http://www.ncbi.nlm.nih.gov/About/primer/genetics cell.html
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Why Do We Care About Molecular Motors?

Molecular Motors are Special Because:

• Chemical Energy ⇒ Mechanical Energy
• DIRECTLY! (Not Via Heat or Electrical Energy)

• Highly Efficient:
• 6 Times More Efficient than a Car

• Models for Molecular Motors
⇒ Theoretical Foundations for Nano-Engineering
• Nano-mechano-chemical Machines
• Tiny Robots!
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Motivation: Actin-Based Motility

Listeria monocytogenes:

http://textbookofbacteriology.net/Listeria 2.html

Bacteria that Causes Listeriosis
Usually Only Flu-Like Symptoms,
CDC Estimates that in the U.S.

• 1,600 People per Year
Become Seriously Ill due to
Listeriosis

• Out of Those, 260 Die
At body temperature:
Listeria is propelled by polymerization of actin filaments.
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Motivation: Actin-Based Motility

Actin-Based Motility of Listeria (Click for Movie)

Figures 16 and 17. (16) Thin section of a portion of the surface of a macrophage infected for 4 h with Listeria. These macrophages were 
fixed in situ in the dish in which they were growing, a, Located at the tip of a projection from the macrophage cell surface is a single 
Listeria and behind it a long, fine, filamentous tail. b, The fine, filamentous tail at higher magnification. Note that the filaments are randomly 
oriented relative to each other, some in transverse section (dots), others in oblique and longitudinal section. (17) Macrophages were infected 
with Listeria for 4 h, then extracted with Triton X-100 and incubated with S1. This section is taken of the same region as Fig. 16. Basal 
to the Listeria at the end of this pseudopod is the fine, filamentous tail whose component filaments are decorated with S1. The small arrow 
indicates the polarity of several decorated filaments. The large arrow indicates residual membrane that has not been solubilized. 
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Figure 23. Stages in the entry, growth, move- 
ment, and spread of Listeria from one macro- 
phage to another. Photographs illustrating all 
these intermediate stages have been presented 
in the figures. 

sperm would be generated (Tilney, 1985). Instead, what we 
find is that the actin filaments in the comet's tail seem to be 
very short and are randomly arranged, yet form a compact 
cluster that does not associate with the rest of the cytoskele- 
ton of the host macrophage. How this completely novel dis- 
tribution of actin filaments is generated will have to occupy 
us in the future. 

From published data in the literature; it is reasonable to 
expect that other intracytoplasmic parasites such as Rickett- 
sia and Shigella may use the host's cytoskeleton for their own 
purposes in ways similar to what we describe for Listeria 
(Ogawa et al., 1968; Pal et al., 1989). However, there are 
probably more intracellular parasites that seem to use en- 
tirely different mechanisms or variations on the mechanisms 
just described to carry out their life cycles on their respective 
hosts (Moulder, 1985; Edelson, 1982). By studying these 
"natural variants" we may be able to rapidly find what assem- 
bled gene products are necessary, a scenario that can help 
us learn a great deal about the cell biology of the host macro- 
phage. 

As with most scientific studies, a number of questions have 
arisen from this one. Many of these questions can be an- 
swered by looking at living cells as Schaechter et al. started 
to do in 1957 and will give us information not only on 
Listeria and its proliferation and for that matter certain intra- 
cellular parasites generally, but also help cell biologists learn 
more about the cell biological processes. 

Particular thanks go to Pat Connelly for cutting the thin sections and taking 
many of the photographs. Her interest and enthusiasm really made this 
project a lot of  fun. We also thank Larry Hale for showing one of us (D. A. 
Portnoy) his unpublished data on the role of  cytochalasin D and intracellu- 
lar spread of ShigeUa. This information helped lead to the present study. 
We also wish to express our profound appreciation to David DeRosier for 
showing us that the actin filaments that give rise to the "comet's tail" and 
the "cloud ~ around the ~'steria must be short. Thanks go to Bob Golder 
for the excellent drawing. Special thanks go to Tom Pollard, our monitor- 

ing editor, and to Susan Craig for their enthusiastic response to our manu- 
script. 

Supported by grants HD 14474 (L. G. Tilney) and AI27655 (D. A. Port- 
noy) from the National Institutes of  Health. 

Received for publication 18 May 1989 and in revised form 9 June 1989. 
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Motivation: Actin-Based Motility

Actin-Based Motility of Listeria

Motivates Study of:

• Polymerization-Driven Motion of a Fluctuating Barrier

Mathematical Framework:

• Diffusion Formalism Brownian Ratchet Model

• Building On Simplest Case:
Single Polymer Ratchet
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Single Polymer Ratchet Model

What is a Single Polymer Ratchet?

αp

βp

x

δ

Component 1:
Polymer

• αp, βp:
Adding/Subtracting Rates

• δ: Monomer Width

• αp > βp:
Polymer Grows
(On Average)
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Single Polymer Ratchet Model

What is a Single Polymer Ratchet?

βw

αw

y

Component 2:
Fluctuating Barrier (Wall)

• αw

“Left” Rate

• βw :
“Right” Rate

• αw > βw :
Barrier Moves “Left”
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Single Polymer Ratchet Model

What is a Single Polymer Ratchet?

αp

βp

βw

αw

x

δ

y

When Components Interact:

• Barrier Motion
“blocked” by Polymer

• Polymer Growth
“blocked” by Barrier
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Single Polymer Ratchet Model

What is a Single Polymer Ratchet?

αp

βp

βw

αw

x

δ

y

When Components Interact:
If Polymerization is “Fast:”

• Barrier Moves Away

• Polymer Immediately Grows

• Blocking Backward
Fluctuation of Barrier

Barrier is “Ratcheted” Forward
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Basic Polymerization Model System

How does Polymerization Work?

αp

βp

x

δ

• x : position of the end of the
polymer

Rate Constants:

• αp: adding a monomer
(growth rate)

• βp: subtracting a monomer
(shrinking rate)
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Basic Polymerization Model System

How does Polymerization Work?

αp

βp

x

δ

Deterministic Model:

• dx
dt = (αp − βp)δ

• x0: initial position

⇒
x(t) = x0 + (αp − βp)δt
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Polymer Position -vs- Time: Deterministic Model

x(t) = x0 + (αp − βp)δt, αp = 4, βp = 1, x0 = 50
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Basic Polymerization Model

How does Polymerization Work?

αp

βp

x

δ

Deterministic System:

• Motion is continuous in
Space, Time

• Initial Condition
⇒ one possible trajectory

Stochastic System:

• Direction of motion
Time motion occurs
Random

• Initial Condition
⇒ many possible trajectories
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Basic Polymerization Model

How does Polymerization Work?

αp

βp

x

δ

Deterministic System:

• Motion is continuous in
Space, Time

• Initial Condition
⇒ one possible trajectory

Stochastic System:

• Direction of motion
Time motion occurs
Random

• Initial Condition
⇒ many possible trajectories
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Stochastic Polymerization Model

Continuous-Time 1-D Biased Random Walk

αp

βp

x

δ x(x − δ) (x + δ)

αpαp

βp βp

Generate Exact Stochastic Simulations ⇒ Gillespie Algorithm

[Gillespie, 2007]
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Simulation: Gillespie Algorithm

Basic Simulation Scheme:

x(x − δ) (x + δ)

αpαp

βp βp

Start: t = t0, x = x0.

• Wait dt for an “Event” to Occur.
Set t = t0 + dt.
• If “Adding Event”

Set x = x0 + δ.
• If “Subtracting Event”

Set x = x0 − δ.

• Repeat Until t = tmax .
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x(x − δ) (x + δ)

αpαp
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Simulation: Gillespie Algorithm

Wait dt for an “Event” to Occur.

x(x − δ) (x + δ)

αpαp

βp βp

• Number of Events:
Poisson Process with rate
λ = αp + βp.

• ⇒ dt is a random number from
Exponential Distribution, rate λ.

• If u is a random number from a
Uniform(0,1) Distribution,
dt = − 1

λ log u
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Simulation: Gillespie Algorithm

Basic Simulation Scheme:

x(x − δ) (x + δ)

αpαp

βp βp

Start: t = t0, x = x0.

• Wait dt for an “Event” to Occur.
Set t = t0 + dt.
• If “Adding Event”

Set x = x0 + δ.
• If “Subtracting Event”

Set x = x0 − δ.

• Repeat Until t = tmax .
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Simulation: Gillespie Algorithm

Decide which “Event” Occurs.

x(x − δ) (x + δ)

αpαp

βp βp

Probability of Subtracting or Adding:

• P(−) =
βp

αp+βp
=

βp
λ

• P(+) =
αp

αp+βp
=

αp

λ

• Note: P(−) + P(+) = 1.

Generate a Uniform(0,1) random
number, u.

• If 0 ≤ u < P(−), Subtract

• If P(−) ≤ u ≤ 1, Add
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Simulation: Gillespie Algorithm

Basic Simulation Scheme:

x(x − δ) (x + δ)

αpαp

βp βp

Start: t = t0, x = x0.

• Wait dt for an “Event” to Occur.
Set t = t0 + dt.
• If “Adding Event”

Set x = x0 + δ.
• If “Subtracting Event”

Set x = x0 − δ.

• Repeat Until t = tmax .
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Polymer Position -vs- Time: Simulated Data

x(t) = x0 + (αp − βp)δt, αp = 4, βp = 1, x0 = 50
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Polymer Position -vs- Time: Simulated Data

x(t) = x0 + (αp − βp)δt, αp = 4, βp = 1, x0 = 50
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Observations:

Simulated Trajectories:

• Same Initial Condition
→ Different Trajectories

• Start Out Close Together,
Spread Out Over Time

• Average Over Many Trajectories
→ Deterministic Trajectory
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Stochastic Polymerization Model

Formulating the Mathematical Model:

Random Variable X(t): Position of Polymer Tip

• Discrete Space Model
• PX(x , t) = Prob{X(t) = x}
• Biased Random Walk

• Continuous Space Model
• PX(x , t) = Prob{x < X(t) ≤ x + dx}
• Biased Brownian Motion



Introduction Polymerization Model Polymerization Ratchet Conclusions

Single Polymer (No Barrier)

Random Variable X(t): Position of Polymer Tip

∂PX(x ,t)
∂t = αpPX(x −∆x , t) +βpPX(x + ∆x , t)− (αp +βp)PX(x , t)

∂PX(x ,t)
∂t = Da

∂2PX(x ,t)
∂x2 − Va

∂PX(x ,t)
∂x

αp

βp

x

∆x

Discrete Space Model:

• PX(x , t) = Prob{X(t) = x}
• Biased Random Walk

To Obtain Continuous Space
Model:

• Taylor Expand in x . . .
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Single Polymer (No Barrier)

Random Variable X(t): Position of Polymer Tip

∂PX(x ,t)
∂t = αpPX(x −∆x , t) +βpPX(x + ∆x , t)− (αp +βp)PX(x , t)

∂PX(x ,t)
∂t = Da

∂2PX(x ,t)
∂x2 − Va

∂PX(x ,t)
∂x

αp

βp

x

∆x

Continuous Space Model:

• PX(x , t) =
Prob{x < X(t) ≤ x + dx}

• Biased Brownian Motion
(Diffusion with Drift)

Da = lim
∆x→0

(αp + βp)
∆x2

2
, Va = lim

∆x→0
(αp − βp)∆x
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Mathematical Model

Continuous Space Polymer Length Model

Partial Differential Equation for Diffusion with Drift

• ∂PX(x ,t)
∂t = Da

∂2PX(x ,t)
∂x2 − Va

∂PX(x ,t)
∂x

Da = lim
∆x→0

(αp + βp)
∆x2

2
, Va = lim

∆x→0
(αp − βp)∆x

Solution:

• PX(x , t) = 1√
4πDat

exp
(
− (x−Vat)2

4Dat

)
(Brownian Motion)
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Mathematical Model

Continuous Space Polymer Length Model (Click for Movie)

ΜΜ-Σ Μ+ΣΜ-2Σ Μ+2ΣΜ-3Σ Μ+3Σ

0.1

0.2

0.3

0.4

0.5

68.26%
95.44%
99.74%

Solution:

• PX(x , t) = 1√
4πDat

exp
(
− (x−Vat)2

4Dat

)
Gaussian (Normal) Distribution:

• PX(x , t) = 1√
2πσ2

exp
(
− (x−µ)2

2σ2

)
• µ = Vat

• σ2 = 2Dat
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Basic Polymerization Model

How does Polymerization Work?

αp

βp

x

δ

Deterministic System:

• Polymer Length: x(t) = Vat

Stochastic System:

• Polymer Length
Distribution:
PX(x , t) =

1√
2πσ2

exp
(
− (x−µ)2

2σ2

)
,

µ = Vat, σ2 = 2Dat
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Compare Simulated Data to Theoretical Results

µ = Vat, σ2 = 2Dat, Va = 3, Da = 5/2, x0 = 50
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Compare Simulated Data to Theoretical Results
µ = Vat, σ2 = 2Dat, Va = 3, Da = 5/2, x0 = 50
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Compare Simulated Data to Theoretical Results
µ = Vat, σ2 = 2Dat, Va = 3, Da = 5/2, x0 = 50
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Compare Simulated Data to Theoretical Results

µ = Vat, σ2 = 2Dat, Va = 3, Da = 5/2, x0 = 50
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x0 + µ +/- m
x0 + µ +/- 2m

Observations:

Simulated Trajectories Shown:

• Mostly Within µ± σ
• (All Within µ± 2σ)

Probability Distribution:

• Mean Increases with Time

• “Spreads Out” over Time

Excellent Agreement!
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Stochastic Polymerization Model Summary

Position of the End of a Single Polymer

• Simulation Scheme
(Spatially Discrete Model)

• Analytical Result:
Formula for Probability Distribution
(Spatially Continuous Model)

⇒ Build On These to Formulate a
Model for the Polymerization Ratchet!
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Single Polymer Ratchet Model

What is a Single Polymer Ratchet?

αp

βp

βw

αw

x

δ

y

When Components Interact:
If Polymerization is “Fast:”

• Barrier Moves Away

• Polymer Immediately Grows

• Blocking Backward
Fluctuation of Barrier

Barrier is “Ratcheted” Forward
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Simulation: Gillespie Algorithm

Basic Simulation Idea

λ = αp + βp + αw + βw Start: t = t0, x = x0, y = y0.

αp

βp

βw

αw

x

δ

y

• Wait dt for an “Event” to Occur.
Set t = t0 + dt.
• If “Polymer Adding Event”

Set x = x0 + δ.
• If “Polymer Subtracting Event”

Set x = x0 − δ.
• If “Wall Moves Right Event”

Set y = y0 + δ.
• If “Wall Moves Left Event”

Set y = y0 − δ.
Geometric Constraint: Polymer/Wall Can “Block” Events
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Simulation: Gillespie Algorithm
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δ

y
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• If “Polymer Subtracting Event”

Set x = x0 − δ.
• If “Wall Moves Right Event”

Set y = y0 + δ.
• If “Wall Moves Left Event”

Set y = y0 − δ.
Geometric Constraint: Polymer/Wall Can “Block” Events
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Single Polymer Ratchet Simulated Data

αp = 4, βp = 1, αw = 2, βw = 1, x0 = y0 = 50

Single Polymer Ratchet Simulation Data
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Single Polymer Ratchet Simulated Data
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Observations:

For This Set of Parameters:

• Polymer “Pushes” the Barrier

• Polymer & Barrier “Close”
(Gap is “Small”)
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Single Polymer Ratchet Simulated Data
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Gap Distance
Geometric Distribution

For the Discrete Space Model:

Steady State Gap Distribution is
Geometric:

• Prob{gap = k} = p(1− p)k

k = 0, 1, 2 . . .

• p =
(αp+αw )−(βp+βw )

(αp+αw )

For This Set of Parameters:

• p = (4+2)−(1+1)
(4+2) = 4

6 = 2
3 .
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Single Polymer Ratchet Model

Formulating the Mathematical Model:

Can Formulate both:

• Discrete Space Model

• Continuous Space Model

Focus on the Continuous Space Model Because:

• Analytical Results can be (More) Easily Obtained

• Easier to Incorporate Additional Features:
• Attraction Between Polymer and Barrier
• N Polymer Ratchet



Introduction Polymerization Model Polymerization Ratchet Conclusions

Single Polymer (No Barrier)

Random Variable X(t): Position of Polymer Tip

Recall:
∂PX(x ,t)

∂t = Da
∂2PX(x ,t)

∂x2 − Va
∂PX(x ,t)

∂x

αp

βp

x

δ

Continuous Space Model:

• PX(x , t) =
Prob{x < X(t) ≤ x + dx}

• Biased Brownian Motion
(Diffusion with Drift)
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Barrier (No Polymer)

Random Variable Y(t): Position of Barrier

∂PY(y ,t)
∂t = Db

∂2PY(y ,t)
∂y2 + Fext

ηb

∂PY(y ,t)
∂y

Fext
ηb
,Db

y

Continuous Space Model:

• PY(y , t) =
Prob{y < Y(t) ≤ y + dy}

• Biased Brownian Motion
(Diffusion with Drift)
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Single Polymer Ratchet

Diffusion Formalism Model: [Qian, 2004]

∂PXY(x , y , t)

∂t
= Da

∂2PXY

∂x2
+ Db

∂2PXY

∂y 2
− Va

∂PXY

∂x
+

Fext

ηb

∂PXY

∂y
(1)

αp

βp

Fext
ηb
,Db

x

δ

y

Joint pdf :

• PXY(x , t) =
Prob{x < X(t) ≤ x + dx ,

y < Y(t) ≤ y + dy}
• X(t),Y(t) Coupled by

Geometric Constraint:
X(t) ≤ Y(t)
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Single Polymer Ratchet Simulated Data

αp = 4, βp = 1, αw = 2, βw = 1, x0 = y0 = 50

Single Polymer Ratchet Simulation Data
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Polymer Ratchet Model:

Two Elements to Track.

• Option 1:
• Polymer Position
• Wall Position

• Option 2:
• Average Position
• Gap Distance
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Single Polymer Ratchet

Diffusion Formalism Model: [Qian, 2004]

∂PXY(x , y , t)

∂t
= Da

∂2PXY

∂x2
+ Db

∂2PXY

∂y 2
− Va

∂PXY

∂x
+

Fext

ηb

∂PXY

∂y
(1)

αp

βp

Fext
ηb
,Db

x

δ

y

Strategy: Decouple System
Introduce:

• ∆(t): Gap Distance

• Z(t): Average Position

Change of Variables:

• ∆ = Y − X, Z = DbX+DaY
Db+Da
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Single Polymer Ratchet

Diffusion Formalism Model: [Qian, 2004]

∂PXY(x , y , t)

∂t
= Da

∂2PXY

∂x2
+ Db

∂2PXY

∂y 2
− Va

∂PXY

∂x
+

Fext

ηb

∂PXY

∂y
(1)

∂P∆(∆, t)

∂t
= (Da + Db)

∂2P∆

∂∆2
+

(
Va +

Fext

ηb

)
∂P∆

∂∆
, (∆ ≥ 0) (2a)

∂PZ(z , t)

∂t
= Dz

∂2PZ

∂z2
− Vz

∂PZ

∂z
, −∞ < z < +∞ (2b)

Da = (α + β) δ
2

2 , Va = (α− β)δ

Dz = DaDb

Db+Da
, Vz = DbVa−DaFext/ηb

Db+Da

• (1) Constraint: X(t) ≤ Y(t)

• (2a) Constraint: ∆(t) ≥ 0
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Single Polymer Ratchet: Gap Distance

Gap Distance Approaches a Steady State:

∂P∆(∆, t)

∂t
= (Da + Db)

∂2P∆

∂∆2
+

(
Va +

Fext

ηb

)
∂P∆

∂∆
, ∆ ≥ 0

Subject to:

• No-Flux B.C. at ∆ = 0

• Normalization Condition

“+”: Diffusion → Boundary
Conditions: Can’t “Leak Out”

D

PDHD,tL

Gap → Steady State!
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Single Polymer Ratchet: Gap Distance

Gap Distance Approaches a Steady State:

∂P∆(∆, t)

∂t
= (Da + Db)

∂2P∆

∂∆2
+

(
Va +

Fext

ηb

)
∂P∆

∂∆
, ∆ ≥ 0

Subject to:

• No-Flux B.C. at ∆ = 0

• Normalization Condition

“+”: Diffusion → Boundary
Conditions: Can’t “Leak Out”

D

PDHD,tL

D

PDssHDL

Gap → Steady State!
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Single Polymer Ratchet: Gap Distance

P∆ss (∆): Steady State Gap Distance

0 = Dδ
d2P∆ss

d∆2
+ Vδ

dP∆ss

d∆
, ∆ ≥ 0

• Dδ = (Da + Db)

• Vδ =
(
Va + Fext

ηb

)
• No-Flux B.C. at ∆ = 0

• Normalization Condition

Steady State Distribution

• Exponential

P∆ss (∆) = Vδ
Dδ

e
−Vδ∆

Dδ
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Single Polymer Ratchet: Average Position

Average Position: Diffusion with Drift

∂PZ(z , t)

∂t
= Dz

∂2PZ

∂z2
− Vz

∂PZ

∂z
, −∞ < z <∞

Solution:

• PZ(z , t) = 1√
4πDz t

e−
(z−Vz t)2

4Dz t

With:

• Dz = DaDb
Db+Da

, Vz = DbVa−DaFext/ηb
Db+Da

Normal Distribution

• Mean:
µ = Vz t

• Variance:
σ2 = 2Dz t
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Single Polymer Ratchet: Average Position

Average Position: Diffusion with Drift

∂PZ(z , t)

∂t
= Dz

∂2PZ

∂z2
− Vz

∂PZ

∂z
, −∞ < z <∞

Solution:

• PZ(z , t) = 1√
4πDz t

e−
(z−Vz t)2

4Dz t

With:

• Dz = DaDb
Db+Da

, Vz = DbVa−DaFext/ηb
Db+Da

Normal Distribution

• Mean:
µ = Vz t

• Variance:
σ2 = 2Dz t
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Stochastic Polymerization Ratchet Model

Summary of Single Polymer Ratchet Results

• Gap Distance Reaches a Steady State

• Average Position Follows Biased Brownian Motion
µ = Vz t (Average of Drift Rates for Polymer and Barrier)

⇒ Build On These Results to Formulate a
Model for the N Polymer Ratchet!
(Hint at a Few Results)
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Introduction
Molecular Motors
Motivation for the Polymerization Ratchet Model

Polymerization Model
Model System & Simulations
Analysis of the Mathematical Model

Polymerization Ratchet Model
Single Polymer Ratchet
N Polymer Bundle Ratchet

Conclusions
Summary
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Motivation: Actin-Based Motility

Actin-Based Motility of Listeria (Click for Movie)

Figures 16 and 17. (16) Thin section of a portion of the surface of a macrophage infected for 4 h with Listeria. These macrophages were 
fixed in situ in the dish in which they were growing, a, Located at the tip of a projection from the macrophage cell surface is a single 
Listeria and behind it a long, fine, filamentous tail. b, The fine, filamentous tail at higher magnification. Note that the filaments are randomly 
oriented relative to each other, some in transverse section (dots), others in oblique and longitudinal section. (17) Macrophages were infected 
with Listeria for 4 h, then extracted with Triton X-100 and incubated with S1. This section is taken of the same region as Fig. 16. Basal 
to the Listeria at the end of this pseudopod is the fine, filamentous tail whose component filaments are decorated with S1. The small arrow 
indicates the polarity of several decorated filaments. The large arrow indicates residual membrane that has not been solubilized. 
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Figure 23. Stages in the entry, growth, move- 
ment, and spread of Listeria from one macro- 
phage to another. Photographs illustrating all 
these intermediate stages have been presented 
in the figures. 

sperm would be generated (Tilney, 1985). Instead, what we 
find is that the actin filaments in the comet's tail seem to be 
very short and are randomly arranged, yet form a compact 
cluster that does not associate with the rest of the cytoskele- 
ton of the host macrophage. How this completely novel dis- 
tribution of actin filaments is generated will have to occupy 
us in the future. 

From published data in the literature; it is reasonable to 
expect that other intracytoplasmic parasites such as Rickett- 
sia and Shigella may use the host's cytoskeleton for their own 
purposes in ways similar to what we describe for Listeria 
(Ogawa et al., 1968; Pal et al., 1989). However, there are 
probably more intracellular parasites that seem to use en- 
tirely different mechanisms or variations on the mechanisms 
just described to carry out their life cycles on their respective 
hosts (Moulder, 1985; Edelson, 1982). By studying these 
"natural variants" we may be able to rapidly find what assem- 
bled gene products are necessary, a scenario that can help 
us learn a great deal about the cell biology of the host macro- 
phage. 

As with most scientific studies, a number of questions have 
arisen from this one. Many of these questions can be an- 
swered by looking at living cells as Schaechter et al. started 
to do in 1957 and will give us information not only on 
Listeria and its proliferation and for that matter certain intra- 
cellular parasites generally, but also help cell biologists learn 
more about the cell biological processes. 

Particular thanks go to Pat Connelly for cutting the thin sections and taking 
many of the photographs. Her interest and enthusiasm really made this 
project a lot of  fun. We also thank Larry Hale for showing one of us (D. A. 
Portnoy) his unpublished data on the role of  cytochalasin D and intracellu- 
lar spread of ShigeUa. This information helped lead to the present study. 
We also wish to express our profound appreciation to David DeRosier for 
showing us that the actin filaments that give rise to the "comet's tail" and 
the "cloud ~ around the ~'steria must be short. Thanks go to Bob Golder 
for the excellent drawing. Special thanks go to Tom Pollard, our monitor- 

ing editor, and to Susan Craig for their enthusiastic response to our manu- 
script. 

Supported by grants HD 14474 (L. G. Tilney) and AI27655 (D. A. Port- 
noy) from the National Institutes of  Health. 

Received for publication 18 May 1989 and in revised form 9 June 1989. 
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N Polymer Ratchet

What is an N Polymer Ratchet?

αp

βp

Component 1:
Bundle of

N Identical Polymers
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N Polymer Ratchet

What is an N Polymer Ratchet?

Db,F/ηb

Component 2:
Barrier
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N Polymer Ratchet

What is an N Polymer Ratchet?

αp

βp

Db,F/ηb

When Components
Interact:
Ratchet:

Longest Polymer
+

Barrier
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Two Polymer Ratchet Simulated Data

αp = 4, βp = 1, αw = 2, βw = 1, tmax = 10, 000

Two Polymer Ratchet Simulation Data
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Two Polymer Ratchet Simulated Data

αp = 4, βp = 1, αw = 2, βw = 1, tmax = 10, 000

Polymer Ratchet Simulation Data
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Two Polymer Ratchet Simulated Data

αp = 4, βp = 1, αw = 2, βw = 1, tmax = 10, 000

Polymer Ratchet Simulation Data
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Observations:

For This Set of Parameters:

• Two Polymers “Push” the
Barrier “Faster” than One

• Polymers & Barrier “Close”
(Gaps are “Small”)
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N Polymer Ratchet

What is an N Polymer Ratchet?

αp

βp

Db,F/ηb

When Components
Interact:
Ratchet:

Longest Polymer
+

Barrier

N Polymer Ratchet:

Interaction Between:

• Longest Polymer

• Barrier

Corresponds to:

• Shortest
Gap Distance
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Two Polymer Ratchet Simulated Data

αp = 4, βp = 1, αw = 2, βw = 1, tmax = 10, 000
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N Polymer Ratchet Simulated Data

αp = 4, βp = 1, αw = 2, βw = 1, tmax = 10, 000
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N Polymer Ratchet Simulated Data
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N Polymer Ratchet Simulated Data

αp = 4, βp = 1, αw = 2, βw = 1, tmax = 10, 000
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Observations:

Adding Polymers to the Bundle:

• Decreases Mean Gap Distance for the Shortest Gap
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Stochastic Polymerization Ratchet Model

Summary of N Polymer Ratchet Results

Observations from Simulated Data:
Increasing Number of Polymers in the Bundle

• Allows Bundle to “Push Faster”

• Decreases the Mean Gap Distance Between
Bundle and the Barrier

Supported by Analysis of N-Polymer Ratchet Model,
[Cole and Qian, 2011]
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Introduction
Molecular Motors
Motivation for the Polymerization Ratchet Model

Polymerization Model
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Conclusions
Summary
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Conclusions

Summary

In This Talk:

1. Single Polymer Growth Model (No Barrier)
• Stochastic Simulations (Gillespie Algorithm)
• Continuous Space Mathematical Model Results:

• Polymer Position ∼ Biased Brownian Motion
(Diffusion with Drift)

2. Single Polymer Ratchet Model

3. N Polymer Bundle Ratchet Model
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Conclusions

Summary

In This Talk:

1. Single Polymer Growth Model (No Barrier)

2. Single Polymer Ratchet Model
• Stochastic Simulations (Gillespie Algorithm)
• Continuous Space Mathematical Model Results:

• Average (Ratchet) Position ∼ Biased Brownian Motion
(Diffusion with Drift)

• Gap Distance → Steady State, Exponential Distribution

3. N Polymer Bundle Ratchet Model
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Conclusions

Summary

In This Talk:

1. Single Polymer Growth Model (No Barrier)

2. Single Polymer Ratchet Model

3. N Polymer Bundle Ratchet Model
• Stochastic Simulations (Gillespie Algorithm)
• Increasing Number of Polymers in the Bundle:

• Allows Bundle to “Push Faster”
• Decreases the Mean Gap Distance between Bundle and Barrier

• For More Information: [Cole and Qian, 2011]
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Thank You!
• Advisor at UW: Hong Qian

• Organizers of the Colloquium

• Audience





N Polymer Ratchet Simulated Data
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N Polymer Ratchet Simulated Data

αp = 4, βp = 1, αw = 2, βw = 1, tmax = 10, 000

0.00

0.11

0.22

0.33

0.44

0.56

0.67

0.78

0.89

1.00

 0  1  2  3  4  5  6  7  8

Pr
ob

ab
ilit

y

Gap Distance

Each Gap

N = 1
N = 2

0.00

0.11

0.22

0.33

0.44

0.56

0.67

0.78

0.89

1.00

 0  1  2  3  4  5  6  7  8

Pr
ob

ab
ilit

y

Gap Distance

Min. Gap

N = 1
N = 2



N Polymer Ratchet Simulated Data

αp = 4, βp = 1, αw = 2, βw = 1, tmax = 10, 000
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Adding Polymers to the Bundle:

• Increases Mean Gap Distance for Each Gap

• Decreases Mean Gap Distance for the Minimum Gap



N Polymer Ratchet Simulated Data
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Observations:

In Other Words,
Adding Polymers to the Bundle:

• Decreases Mean Gap Between Bundle and the Barrier



N Polymer Ratchet

Joint pdf for all {Xi(t)}, Y(t): f ({xi}, y , t)

∂f ({xi}, y , t)

∂t
=

N∑
k=1

(
Da
∂2f

∂x2
k

− Va
∂f

∂xk

)
+ Db

∂2f

∂2y
+

F

ηb

∂f

∂y
(3)

α

β

Db,F/ηb

x1 x2 xN

y

Strategy: Decouple via
Change of Variables:

• ∆i = Y − Xi ,

Z =
Db

∑N
j=1 Xj+DaY

NDb+Da



N Polymer Ratchet

Joint pdf for all {∆i(t)}, Y(t): f ({ξi}, z , t)

∂f ({xi}, y , t)

∂t
=

N∑
k=1

(
Da
∂2f

∂x2
k

− Va
∂f

∂xk

)
+ Db

∂2f

∂2y
+

F

ηb

∂f

∂y
(3)

∂φ({ξi}, t)

∂t
=

N∑
i,j

(Daδij + Db)
∂2φ

∂ξi∂ξj
+

(
Va +

F

ηb

) N∑
i=1

∂φ

∂ξi
(4a)

∂PZ(z , t)

∂t
=

DbDa

NDb + Da

∂2PZ

∂z2
−
(
NDbVa − DaF/ηb

NDb + Da

)
∂PZ

∂z
(4b)

f ({xi}, y , t) = f ({ξi}, z , t)
Decoupled:
= φ({ξi}, t)PZ(z , t)

Geometric Constraints:

• For (3): Xi (t) ≤ Y(t)

• For (4a): ∆i (t) ≥ 0



N Polymer Ratchet: Gap Distance

Gap Distances Approach Steady State:

φ({ξi}) = εN exp

(
−ε

N∑
i=1

ξi

)
, ε =

Va + F/ηb
NDb + Da

, P∆(1)
(x) = Nεe−Nεx

{∆i}: Gaps are Identical,
Exponentially Distributed

• µ = 1
ε = NDb+Da

Va+F/ηb

∆(1) = min{∆i}
Exponentially Distributed

• µ = 1
Nε = Db+Da/N

Va+F/ηb
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N Polymer Ratchet: Average Position

Average Position: Diffusion with Drift

∂PZ(z , t)

∂t
= DzN

∂2PZ

∂z2
− VzN

∂PZ

∂z

Solution:

• PZ(z , t) = 1√
4πDzN

t
e
−

(z−VzN
t)2

4DzN
t

With:

• DzN = DaDb
NDb+Da

,

VzN = NDbVa−DaF/ηb
NDb+Da

Normal Distribution

• Mean:
µ = VzN t

• Variance:
σ2 = 2DzN t



Diffusion Formalism: Single Polymer Ratchet
Full Time-Dependent Gap Distance Solution

Initial Boundary Value Problem for (x ≥ 0, t > 0):

• ∂P∆(x,t)
∂t

= Dδ
∂2P∆
∂x2 + Vδ

∂P∆
∂x

• P∆(x, 0) = δ(x)

• Dδ
∂P∆(0,t)
∂x

+ VδP∆(0, t) = 0

• limx→∞ P∆(x, t) = 0

limx→∞
∂P∆(x,t)
∂x

= 0

Solution Via New Transform Method of Fokas

P∆(x , t) = Vδ
Dδ

e
− Vδx

Dδ

+e
− Vδx

2Dδ e
−
(

Vδ
Dδ

)2
t

4Dδ

∫ ∞
0

ze
− z2t

4Dδ

(
z cos(zx/2)− Vδ

Dδ
sin(zx/2)

)
dz

π

((
Vδ
Dδ

)2

+ z2

)
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