[Polymer Growth](#page-74-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0)

Polymer Growth Simulation

Assembly Against a Force

Christine Lind

University of Washington Department of Applied Mathematics

June 2, 2005

KORK EXTERICATELY

Outline

[Introduction](#page-2-0)

[What are Molecular Motors?](#page-2-0) [Conventional Molecular Motors](#page-3-0) [Polymerization as a Molecular Motor](#page-6-0)

[Mathematical Model](#page-10-0) & Simulations

[Random Walk - Discrete Time](#page-11-0) [Random Walk - Continuous Time](#page-16-0) [Brownian Motion](#page-24-0)

[Current Research](#page-29-0)

[Fixed Wall](#page-30-0) [Moving Wall](#page-49-0) [Many Polymers](#page-59-0) [Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0)

KORK EXTERICATELY

What are Molecular Motors?

Protein molecules in the cell that:

- \blacktriangleright generate force
- \blacktriangleright cause transport

Inspirit: MedicalEngineer.co.uk & V.F. Murphy 2004

KORK EXTERICATES

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[What are Molecular](#page-2-0) Motors? Conventional [Molecular Motors](#page-3-0)

[Polymerization as a](#page-6-0) Molecular Motor

[Mathematical](#page-10-0) Model & Simulations

Conventional Molecular Motors

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

KORK EXTERICATES

Conventional Molecular Motors

Kinesin

Intracellular Transport

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[What are Molecular](#page-2-0) Motors? Conventional [Molecular Motors](#page-3-0)

[Polymerization as a](#page-6-0) Molecular Motor

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0)

KORK EXTERNE PROVIDE

Conventional Molecular Motors

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[What are Molecular](#page-2-0) Motors? Conventional [Molecular Motors](#page-3-0)

[Polymerization as a](#page-6-0) Molecular Motor

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0)

KORK EXTERICATES

Polymerization as a Motor

KEL KALK KELKEL KARK

[Polymer Growth](#page-0-0) Simulation Christine Lind

Polymerization as a Motor - Biological Examples

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[What are Molecular](#page-2-0) Motors? Conventional [Molecular Motors](#page-3-0)

[Polymerization as a](#page-6-0) Molecular Motor

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0)

 $\mathbf{E} = \mathbf{A} \mathbf{E} \mathbf{F} + \mathbf{A} \mathbf{F} \mathbf{F} + \mathbf{A} \mathbf{F} \mathbf{F} + \mathbf{A} \mathbf{F}$ 2990

Polymerization as a Motor - Biological Examples

Cell Membrane Deformation

Sickle Hemoglobin Polymerization creates Sickle Cells:

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[What are Molecular](#page-2-0) Motors? Conventional [Molecular Motors](#page-3-0)

[Polymerization as a](#page-6-0) Molecular Motor

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0)

KORK EXTERICATES

How does Polymerization Work?

Rate Constants:

 k_{+} : second order rate constant of adding a monomer

 $k_$: first order rate constant of subtracting a monomer c: concentration of monomers in surrounding solution Note:

Adding/Subtracting monomers may actually require ATP hydrolysis, but this will not be included in our model.

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[What are Molecular](#page-2-0) Motors? Conventional [Molecular Motors](#page-3-0)

[Polymerization as a](#page-6-0) Molecular Motor

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0)

KORK EXTERICATES

Outline

[Introduction](#page-2-0) [What are Molecular Motors?](#page-2-0) [Conventional Molecular Motors](#page-3-0) [Polymerization as a Molecular Motor](#page-6-0)

[Mathematical Model](#page-10-0) & Simulations

[Random Walk - Discrete Time](#page-11-0) [Random Walk - Continuous Time](#page-16-0) [Brownian Motion](#page-24-0)

[Current Research](#page-29-0) [Fixed Wall](#page-30-0) [Moving Wall](#page-49-0) [Many Polymers](#page-59-0)

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Random Walk -](#page-11-0) Discrete Time

Random Walk - [Continuous Time](#page-16-0) [Brownian Motion](#page-24-0)

[Current Research](#page-29-0)

KEL KALK KELKEL KARK

Polymerization as a Random Walk - Discrete Time

Random Walk Model

∆x - width of each monomer

Δt - size of discrete time step

 $l(t)$ - length of the polymer

 $l(0) = m\Delta x$ - inital polymer has m monomers

If $I(t)$ reaches zero, then the polymer is gone, and can no longer grow or shrink.

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Random Walk -](#page-11-0) Discrete Time

Random Walk - [Continuous Time](#page-16-0) [Brownian Motion](#page-24-0)

Polymerization as a Random Walk - Discrete Time

Random Walk Model

At each time step either:

- Add one monomer with probability $k_{+}c\Delta t$
- \triangleright Subtract one monomer with probability $k_-\Delta t$

Then $l(t + \Delta t) = l(t) \pm \Delta x$.

Note:

Let $\Delta t = \frac{1}{k+1}$ $\frac{1}{k_-+k_+\epsilon}$ so that the total probability at each time step is one:

$$
P(-) + P(+) = \frac{k_-}{k_- + k_+ c} + \frac{k_+ c}{k_- + k_+ c} = \frac{k_- + k_+ c}{k_- + k_+ c} = 1
$$

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Random Walk -](#page-11-0) Discrete Time

Random Walk - [Continuous Time](#page-16-0) [Brownian Motion](#page-24-0)

[Current Research](#page-29-0)

KORK EXTERICATELY

Polymerization as a Random Walk - Discrete Time

Random Walk Model

At each time step either:

- Add one monomer with probability $k_{+}c\Delta t$
- \triangleright Subtract one monomer with probability $k_-\Delta t$

Then $l(t + \Delta t) = l(t) \pm \Delta x$.

Note:

Let $\Delta t = \frac{1}{k+1}$ $\frac{1}{k_-+k_+\epsilon}$ so that the total probability at each time step is one:

$$
P(-) + P(+) = \frac{k_-}{k_- + k_+ c} + \frac{k_+ c}{k_- + k_+ c} = \frac{k_- + k_+ c}{k_- + k_+ c} = 1
$$

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Random Walk -](#page-11-0) Discrete Time

Random Walk - [Continuous Time](#page-16-0) [Brownian Motion](#page-24-0)

[Current Research](#page-29-0)

KORK EXTERICATELY

Random Walk - Discrete Time Simulation

Simulation Procedure

Let num $= k_-\Delta t$ At each time step, generate u , a uniform $(0,1)$ random number:

Table: Algorithm for deciding which event occurs.

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Random Walk -](#page-11-0) Discrete Time

Random Walk - [Continuous Time](#page-16-0) [Brownian Motion](#page-24-0)

Random Walk - Discrete Time Simulation

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & **Simulations**

[Random Walk -](#page-11-0) Discrete Time

Random Walk - [Continuous Time](#page-16-0) [Brownian Motion](#page-24-0)

[Current Research](#page-29-0)

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{B} + \math$ 299

Polymerization as a Random Walk - Continuous Time

Random Walk Model with Continuous Time \triangleright Discrete Time Model is not very realistic. Assume that: 1. Adding or Subtracting events are independent 2. In a small amount of time dt . \blacktriangleright P_{one event} $(dt) = \lambda dt + o(dt)$ $P_{\text{no events}}(dt) = 1 - \lambda dt + o(dt)$ \triangleright Number of Events in time t is modeled as a Poisson Process! \triangleright Δt is now random k_{-}

 $k_{\pm C}$ _r $\overline{\epsilon}$, $\overline{\epsilon}$, $\overline{\epsilon}$, $\overline{\epsilon}$, $\overline{\epsilon}$, $\overline{\epsilon}$, $\overline{\epsilon}$

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Random Walk -](#page-11-0) Discrete Time

Random Walk - [Continuous Time](#page-18-0)

[Brownian Motion](#page-24-0)

Polymerization as a Random Walk - Continuous Time

Random Walk Model with Continuous Time

- \triangleright Discrete Time Model is not very realistic. Assume that:
	- 1. Adding or Subtracting events are independent 2. In a small amount of time dt:
		- \blacktriangleright P_{one event} $(dt) = \lambda dt + o(dt)$
		- $P_{\text{no events}}(dt) = 1 \lambda dt + o(dt)$
- \triangleright Number of Events in time t is modeled as a Poisson Process!
	- \triangleright Rate: $\lambda = k_+ + k_+c$

 \triangleright Δt is now random

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Random Walk -](#page-11-0) Discrete Time

Random Walk - [Continuous Time](#page-18-0)

[Brownian Motion](#page-24-0)

Polymerization as a Random Walk - Continuous Time

Random Walk Model with Continuous Time

- \triangleright Discrete Time Model is not very realistic. Assume that:
	- 1. Adding or Subtracting events are independent 2. In a small amount of time dt .
		- \blacktriangleright P_{one event} $(dt) = \lambda dt + o(dt)$
		- $P_{\text{no events}}(dt) = 1 \lambda dt + o(dt)$
- \triangleright Number of Events in time t is modeled as a Poisson Process!
	- \triangleright Rate: $\lambda = k_+ + k_+c$
- \blacktriangleright Δt is now random
	- Inter-arrival times have exponential(rate= λ) distribution

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Random Walk -](#page-11-0) Discrete Time

Random Walk - [Continuous Time](#page-16-0)

[Brownian Motion](#page-24-0)

Continuous Time Simulation

Poisson Process

 \blacktriangleright Has density function

$$
P(N(t) = k) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}
$$

- \triangleright Often used to describe the number of events that occur in an amount of time t.
- **If** Time between events, τ , given by exponential(rate= λ):

$$
P(\tau = t) = \lambda e^{-\lambda t}
$$

KORK EXTERICATELY

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Random Walk -](#page-11-0) Discrete Time

Random Walk - [Continuous Time](#page-16-0)

[Brownian Motion](#page-24-0)

Generation of an Exponential from a Uniform

Let U be a uniform $(0,1)$ random variable, and $\frac{1}{\lambda} > 0$, then

$$
X=-\frac{1}{\lambda}\log U
$$

is an exponential(rate= λ) random variable

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Random Walk -](#page-11-0) Discrete Time

Random Walk - [Continuous Time](#page-16-0)

[Brownian Motion](#page-24-0)

[Current Research](#page-29-0)

KORK EXTERICATELY

Simulation Set-up

Let the following formulas hold:

$$
\begin{aligned} P(-) &= \frac{k_-}{k_- + k_+ c} = \frac{k_-}{\lambda} \\ \blacktriangleright P(+) &= \frac{k_+ c}{k_- + k_+ c} = \frac{k_+ c}{\lambda} \end{aligned}
$$

$$
\bullet \quad num_{-} = \frac{k_{-}}{\lambda}
$$

Note that the total probability is still one:

$$
P(-) + P(+) = \frac{k_{-}}{\lambda} + \frac{k_{+}c}{\lambda} = \frac{k_{-} + k_{+}c}{k_{-} + k_{+}c} = 1
$$

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Random Walk -](#page-11-0) Discrete Time

Random Walk - [Continuous Time](#page-16-0)

[Brownian Motion](#page-24-0)

Simulation Procedure

For each event-time pair:

- 1. Generate two uniform $(0,1)$ random numbers, u_1, u_2 .
- **2.** Use u_1 to generate the interarrival time, τ , for the event using $\tau = -\frac{1}{\lambda}$ $\frac{1}{\lambda}$ log u_1 .
- **3.** Use u_2 to decide whether the event will be addition or subtraction:
	- If $0 \le u_2 < \textit{num}_-$ then subtract a monomer.
	- If $num_-\leq u_2\leq 1$ then add a monomer.
- **4.** Record the *i*th event time $t_i = t_{i-1} + \tau$ and the location of the end of the polymer $x_i = x_{i-1} \pm \Delta x$, where \pm is determined by Step [3.](#page-22-0)

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Random Walk -](#page-11-0) Discrete Time

Random Walk - [Continuous Time](#page-16-0)

[Brownian Motion](#page-24-0)

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Random Walk -](#page-11-0) Discrete Time

Random Walk - [Continuous Time](#page-16-0)

[Brownian Motion](#page-24-0)

[Current Research](#page-29-0)

 -140 **KUP KOPP KEP KEP**

Random Walk - Brownian Motion Connection

Let $\alpha = k_+c$, $\beta = k_-$. $p(x, t)$: probability that the polymer has length x at time t (continuous time)

$$
\triangleright p_t(x,t) = \alpha p(x-\Delta x,t) + \beta p(x+\Delta x,t) - (\alpha+\beta)p(x,t)
$$

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Random Walk -](#page-11-0) Discrete Time

Random Walk - [Continuous Time](#page-16-0)

[Brownian Motion](#page-25-0)

[Current Research](#page-29-0)

KORK EXTERICATELY

Random Walk - Brownian Motion Connection

Let $\alpha = k_+c$, $\beta = k_-$. $p(x, t)$: probability that the polymer has length x at time t (continuous time)

$$
\blacktriangleright \rho_t(x,t) = \alpha p(x-\Delta x,t) + \beta p(x+\Delta x,t) - (\alpha+\beta)p(x,t)
$$

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Random Walk -](#page-11-0) Discrete Time

Random Walk - [Continuous Time](#page-16-0) [Brownian Motion](#page-24-0)

Random Walk - Brownian Motion Connection

▶ Taylor Expansion & Some Algebra:

$$
p_t(x,t) = (\alpha + \beta) \frac{(\Delta x)^2}{2} p_{xx}(x,t) - (\alpha - \beta) \Delta x \ p_x(x,t)
$$

 $+$ higher order terms in Δx

 \blacktriangleright Let $\Delta x \rightarrow 0$:

$$
\lim_{\Delta x \to 0} (\alpha + \beta) \frac{(\Delta x)^2}{2} = D \qquad \lim_{\Delta x \to 0} (\alpha - \beta) \Delta x = V
$$

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Random Walk -](#page-11-0) Discrete Time

Random Walk - [Continuous Time](#page-16-0) [Brownian Motion](#page-24-0)

[Current Research](#page-29-0)

KORK EXTERICATELY

Random Walk - Brownian Motion Connection

▶ Taylor Expansion & Some Algebra:

$$
p_t(x,t) = (\alpha + \beta) \frac{(\Delta x)^2}{2} p_{xx}(x,t) - (\alpha - \beta) \Delta x \ p_x(x,t)
$$

 $+$ higher order terms in Δx

 \blacktriangleright Let $\Delta x \rightarrow 0$:

$$
\lim_{\Delta x \to 0} (\alpha + \beta) \frac{(\Delta x)^2}{2} = D \qquad \lim_{\Delta x \to 0} (\alpha - \beta) \Delta x = V
$$

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Random Walk -](#page-11-0) Discrete Time

Random Walk - [Continuous Time](#page-16-0) [Brownian Motion](#page-24-0)

Random Walk - Brownian Motion Connection

 \blacktriangleright Then we obtain

$$
p_t(x,t) = Dp_{xx}(x,t) - Vp_x(x,t)
$$

KORK EXTERICATELY

 \blacktriangleright The Diffusion Equation with Drift!

 \triangleright Will allow us to answer more questions later...

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Random Walk -](#page-11-0) Discrete Time

Random Walk - [Continuous Time](#page-16-0)

[Brownian Motion](#page-24-0)

Outline

[Introduction](#page-2-0) [What are Molecular Motors?](#page-2-0) [Conventional Molecular Motors](#page-3-0) [Polymerization as a Molecular Motor](#page-6-0)

[Mathematical Model & Simulations](#page-10-0) [Random Walk - Discrete Time](#page-11-0) [Random Walk - Continuous Time](#page-16-0) [Brownian Motion](#page-24-0)

[Current Research](#page-29-0)

[Fixed Wall](#page-30-0) [Moving Wall](#page-49-0) [Many Polymers](#page-59-0)

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0)

[Fixed Wall](#page-30-0) [Moving Wall](#page-49-0) [Many Polymers](#page-59-0)

KEL KALK KELKEL KARK

Polymer Interacting with a Fixed Wall

Let $x = w$ be the position of the fixed wall. Polymer (and Simulation) behaves as before, but with additional constraints:

If $w - x < \Delta x$ then a monomer cannot be added.

If a monomer is to be added and $w - x < \Delta x$, then polymer length remains the same at that time.

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0)

[Fixed Wall](#page-31-0) [Moving Wall](#page-49-0) [Many Polymers](#page-59-0)

Polymer Interacting with a Fixed Wall

Let $x = w$ be the position of the fixed wall. Polymer (and Simulation) behaves as before, but with additional constraints:

- If $w x < \Delta x$ then a monomer cannot be added.
- If a monomer is to be added and $w - x < \Delta x$, then polymer length remains the same at that time.

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0)

[Fixed Wall](#page-30-0) [Moving Wall](#page-49-0) [Many Polymers](#page-59-0)

KORK EXTERICATES

メロア メロドバイエア メモア

÷

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0)

[Fixed Wall](#page-30-0) [Moving Wall](#page-49-0) [Many Polymers](#page-59-0)

Gap Distribution

We can also model the gap distance using the diffusion equation with drift:

$$
\blacktriangleright p_t = Dp_{xx} + Vp_x
$$

$$
D = (k_+c + k_-) \qquad V = (k_+c - k_-)
$$

A DIA K F A REIN A RIA K DIA K DIA R

 \triangleright Note that the sign on V is different than before.

 \triangleright We can solve for the steady state solution

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0)

[Fixed Wall](#page-30-0) [Moving Wall](#page-49-0) [Many Polymers](#page-59-0)

Gap Distribution

We can also model the gap distance using the diffusion equation with drift:

$$
\blacktriangleright p_t = Dp_{xx} + Vp_x
$$

$$
D = (k_+c + k_-) \qquad V = (k_+c - k_-)
$$

 \triangleright Note that the sign on V is different than before.

 \triangleright We can solve for the steady state solution

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0)

[Fixed Wall](#page-30-0) [Moving Wall](#page-49-0) [Many Polymers](#page-59-0)

A DIA K F A REIN A RIA K DIA K DIA R

Gap Distribution

We can also model the gap distance using the diffusion equation with drift:

$$
\blacktriangleright p_t = Dp_{xx} + Vp_x
$$

$$
D = (k_+c + k_-) \qquad V = (k_+c - k_-)
$$

KOD KA LED KED E VAQ

- \triangleright Note that the sign on V is different than before.
- \triangleright We can solve for the steady state solution

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0)

[Fixed Wall](#page-30-0) [Moving Wall](#page-49-0) [Many Polymers](#page-59-0)
Steady State Gap Distribution - Brownian Motion

 $0 = Du_{xx} + Vu_{x}$ Need two conditions:

 \blacktriangleright No-Flux Boundary Condition at $x=0$:

 $Du_x + Vu = 0$

 \blacktriangleright Normalization:

$$
\int_0^\infty u(x)dx=1
$$

▶ Steady-State Solution:

$$
u(x) = \frac{V}{D}e^{-\frac{V}{D}x}
$$

 \triangleright Note: This model is spatially continuous system...

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0)

Steady State Gap Distribution - Brownian Motion

 $0 = Du_{xx} + Vu_{x}$ Need two conditions:

 \blacktriangleright No-Flux Boundary Condition at $x=0$:

 $Du_x + Vu = 0$

 \blacktriangleright Normalization:

$$
\int_0^\infty u(x)dx=1
$$

 \triangleright Steady-State Solution:

$$
u(x)=\frac{V}{D}e^{-\frac{V}{D}x}
$$

 \triangleright Note: This model is spatially continuous system...

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0)

Steady State Gap Distribution - Brownian Motion

 $0 = Du_{xx} + Vu_{x}$ Need two conditions:

 \blacktriangleright No-Flux Boundary Condition at $x=0$:

 $Du_x + Vu = 0$

 \blacktriangleright Normalization:

$$
\int_0^\infty u(x)dx=1
$$

 \triangleright Steady-State Solution:

$$
u(x)=\frac{V}{D}e^{-\frac{V}{D}x}
$$

 \triangleright Note: This model is spatially continuous system...

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0)

Steady State Gap Distribution - Brownian Motion Let p_i denote the probability that the gap distance is i:

$$
\alpha = \frac{k_+ c}{k_+ c_+ k_-} \qquad \beta = \frac{k_-}{k_+ c_+ k_-}
$$

$$
p_i = \alpha p_{i+1} + \beta p_{i-1}
$$

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0)

Steady State Gap Distribution - Brownian Motion Let p_i denote the probability that the gap distance is i:

$$
\alpha = \frac{k_+ c}{k_+ c_+ k_-} \qquad \beta = \frac{k_-}{k_+ c_+ k_-}
$$

KORK EXTERICATES

$$
\blacktriangleright p_i = \alpha p_{i+1} + \beta p_{i-1}
$$

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0)

Steady State Gap Distribution - Random Walk

Let $p_i = \mu^i$:

$$
\blacktriangleright \mu = \alpha \mu^2 + \beta
$$

 \triangleright Quadratic Equation & $\alpha + \beta = 1$:

$$
\mu_1=1, \qquad \mu_2=\frac{\beta}{\alpha}
$$

 \triangleright Then we know that the system must be of the form

$$
p_i = a \left(\frac{\beta}{\alpha}\right)^i + b
$$

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0)

[Fixed Wall](#page-30-0) [Moving Wall](#page-49-0) [Many Polymers](#page-59-0)

KEL KALK KELKEL KARK

Steady State Gap Distribution - Random Walk

Let $p_i = \mu^i$:

$$
\blacktriangleright \mu = \alpha \mu^2 + \beta
$$

 \triangleright Quadratic Equation & $\alpha + \beta = 1$:

$$
\mu_1=1, \qquad \mu_2=\frac{\beta}{\alpha}
$$

 \triangleright Then we know that the system must be of the form

$$
p_i = a \left(\frac{\beta}{\alpha}\right)^i + b
$$

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0)

[Fixed Wall](#page-30-0) [Moving Wall](#page-49-0) [Many Polymers](#page-59-0)

Steady State Gap Distribution - Random Walk

Let $p_i = \mu^i$:

$$
\blacktriangleright \mu = \alpha \mu^2 + \beta
$$

► Quadratic Equation & $\alpha + \beta = 1$:

$$
\mu_1=1, \qquad \mu_2=\frac{\beta}{\alpha}
$$

 \blacktriangleright Then we know that the system must be of the form

$$
p_i = a \left(\frac{\beta}{\alpha}\right)^i + b
$$

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0)

[Fixed Wall](#page-30-0) [Moving Wall](#page-49-0) [Many Polymers](#page-59-0)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 Q ·

Steady State Gap Distribution - Random Walk We can apply the normalization condition:

$$
\sum_{i=0}^{\infty} p_i = \sum_{i=0}^{\infty} \left(a\left(\frac{\beta}{\alpha}\right)^i + b\right) = 1
$$

 \blacktriangleright The sum must converge, so $b = 0$

 \triangleright We are left with a geometric series:

$$
a\sum_{i=0}^{\infty} \left(\frac{\beta}{\alpha}\right)^i = a\frac{1}{1-\frac{\beta}{\alpha}} = 1
$$

▶ Spatially Discrete Steady State Solution:

$$
p_i = \frac{\alpha - \beta}{\alpha} \left(\frac{\beta}{\alpha}\right)^i
$$

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0)

Steady State Gap Distribution - Random Walk We can apply the normalization condition:

$$
\sum_{i=0}^{\infty} p_i = \sum_{i=0}^{\infty} \left(a\left(\frac{\beta}{\alpha}\right)^i + b\right) = 1
$$

 \blacktriangleright The sum must converge, so $b = 0$

 \triangleright We are left with a geometric series:

$$
a\sum_{i=0}^{\infty} \left(\frac{\beta}{\alpha}\right)^i = a\frac{1}{1-\frac{\beta}{\alpha}} = 1
$$

▶ Spatially Discrete Steady State Solution:

$$
p_i = \frac{\alpha - \beta}{\alpha} \left(\frac{\beta}{\alpha}\right)^i
$$

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0)

Steady State Gap Distribution - Random Walk We can apply the normalization condition:

$$
\sum_{i=0}^{\infty} p_i = \sum_{i=0}^{\infty} \left(a\left(\frac{\beta}{\alpha}\right)^i + b\right) = 1
$$

 \blacktriangleright The sum must converge, so $b = 0$

 \triangleright We are left with a geometric series:

$$
a\sum_{i=0}^{\infty}\left(\frac{\beta}{\alpha}\right)^{i}=a\frac{1}{1-\frac{\beta}{\alpha}}=1
$$

▶ Spatially Discrete Steady State Solution:

$$
p_i = \frac{\alpha - \beta}{\alpha} \left(\frac{\beta}{\alpha}\right)^i
$$

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0)

Steady State Gap Distribution - Random Walk We can apply the normalization condition:

$$
\sum_{i=0}^{\infty} p_i = \sum_{i=0}^{\infty} \left(a\left(\frac{\beta}{\alpha}\right)^i + b\right) = 1
$$

 \blacktriangleright The sum must converge, so $b = 0$

 \triangleright We are left with a geometric series:

$$
a\sum_{i=0}^{\infty} \left(\frac{\beta}{\alpha}\right)^i = a\frac{1}{1-\frac{\beta}{\alpha}} = 1
$$

▶ Spatially Discrete Steady State Solution:

$$
p_i = \frac{\alpha - \beta}{\alpha} \left(\frac{\beta}{\alpha}\right)^i
$$

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0)

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0)

[Fixed Wall](#page-30-0) [Moving Wall](#page-49-0) [Many Polymers](#page-59-0)

KEY E DAR

Wall Moves According to a Random Walk

 w_+ - rate that the wall moves towards the polymer $w_$ - rate the wall moves away from the polymer

 g - gap distance $\lambda_p = k_+ c + k_-$ - Poisson Process rate for the polymer $\lambda_w = w_+ + w_-$ - Poisson Process rate for the wall

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0) [Fixed Wall](#page-30-0) [Moving Wall](#page-49-0) [Many Polymers](#page-59-0)

A DIA K F A REIN A RIA K DIA K DIA R

Polymer Interacting with a Moving Wall

Polymer and Wall both follow random walks with constraints:

- If $g < \Delta x$ then a monomer cannot be added and the wall cannot move towards the polymer.
- If a monomer is to be added (wall is to move towards the polymer) and $g < \Delta x$, then polymer length (wall position) remains the same at that time.

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0) [Fixed Wall](#page-30-0) [Moving Wall](#page-49-0) [Many Polymers](#page-59-0)

Polymer Interacting with a Moving Wall

Polymer and Wall both follow random walks with constraints:

- If $g < \Delta x$ then a monomer cannot be added and the wall cannot move towards the polymer.
- If a monomer is to be added (wall is to move towards the polymer) and $g < \Delta x$, then polymer length (wall position) remains the same at that time.

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0) [Fixed Wall](#page-30-0) [Moving Wall](#page-49-0) [Many Polymers](#page-59-0)

Polymer Interacting with a Moving Wall

Polymer and Wall both follow random walks with constraints:

- If $g < \Delta x$ then a monomer cannot be added and the wall cannot move towards the polymer.
- If a monomer is to be added (wall is to move towards the polymer) and $g < \Delta x$, then polymer length (wall position) remains the same at that time.

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0) [Fixed Wall](#page-30-0) [Moving Wall](#page-49-0) [Many Polymers](#page-59-0)

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & **Simulations**

[Current Research](#page-29-0) [Fixed Wall](#page-30-0)

[Moving Wall](#page-49-0) [Many Polymers](#page-59-0)

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$ 2990

Steady State Gap Distribution - Random Walk Let p_i denote the probability that the gap distance is i, and let

$$
\alpha_p = \frac{k_+ c}{k_+ c + k_- + w_+ w_-} \qquad \beta_p = \frac{k_-}{k_+ c + k_- + w_+ w_-}
$$

$$
\alpha_w = \frac{w_+}{k_+ c + k_- + w_+ w_-} \qquad \beta_w = \frac{k_-}{k_+ c + k_- + w_+ w_-}
$$

 $\triangleright p_i = (\alpha_p + \alpha_w)p_{i+1} + (\beta_p + \beta_w)p_{i-1}$

(There are now 2 ways that gap distance can change)

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0) [Fixed Wall](#page-30-0) [Moving Wall](#page-49-0) [Many Polymers](#page-59-0)

Steady State Gap Distribution - Random Walk Let p_i denote the probability that the gap distance is i, and let

$$
\alpha_p = \frac{k_+ c}{k_+ c + k_- + w_+ w_-} \qquad \beta_p = \frac{k_-}{k_+ c + k_- + w_+ w_-}
$$

$$
\alpha_w = \frac{w_+}{k_+ c + k_- + w_+ w_-} \qquad \beta_w = \frac{k_-}{k_+ c + k_- + w_+ w_-}
$$

$$
\blacktriangleright p_i = (\alpha_p + \alpha_w)p_{i+1} + (\beta_p + \beta_w)p_{i-1}
$$

(There are now 2 ways that gap distance can change)

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0) [Fixed Wall](#page-30-0) [Moving Wall](#page-49-0) [Many Polymers](#page-59-0)

Steady State Gap Distribution - Random Walk

Let $\alpha = \alpha_{p} + \alpha_{w}$, and $\beta = \beta_{p} + \beta_{w}$ Then we can see that

$$
p_i = (\alpha_p + \alpha_w)p_{i+1} + (\beta_p + \beta_w)p_{i-1}
$$

= $\alpha p_{i+1} + \beta p_{i-1}$

This is exactly the same equation we had before!

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0) [Fixed Wall](#page-30-0)

[Moving Wall](#page-49-0) [Many Polymers](#page-59-0)

Steady State Gap Distribution - Random Walk

We already know the Steady State Distribution:

$$
p_i = \frac{\alpha - \beta}{\alpha} \left(\frac{\beta}{\alpha}\right)^i
$$

where:

$$
\alpha = (k_+c + w_+) \qquad \beta = (k_- + w_-)
$$

KORK EXTERICATES

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0)

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & **Simulations**

[Current Research](#page-29-0)

[Fixed Wall](#page-30-0) [Moving Wall](#page-49-0) [Many Polymers](#page-59-0)

Multiple Polymers Interacting with a Moving Wall

 w_+ - rate that the wall moves towards the polymers $w_$ - rate the wall moves away from the polymers

 $\lambda_p = k_+ c + k_-$ - Poisson Process rate for each polymer $\lambda_w = w_+ + w_-$ - Poisson Process rate for the wall

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & **Simulations**

[Current Research](#page-29-0)

[Fixed Wall](#page-30-0) [Moving Wall](#page-49-0) [Many Polymers](#page-59-0)

A DIA K F A REIN A RIA K DIA K DIA R

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & **Simulations**

[Current Research](#page-29-0)

[Fixed Wall](#page-30-0) [Moving Wall](#page-49-0) [Many Polymers](#page-59-0)

 299

Multiple Polymers Interacting with a Moving Wall

- \blacktriangleright The Polymers are Identical:
	- $k_+c_{p1} = k_+c_{p2} = k_+c$ $k_{-p1} = k_{-p2} = k_{-p3}$

▶ Are the Polymers Independent?

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0)

[Fixed Wall](#page-30-0) [Moving Wall](#page-49-0) [Many Polymers](#page-59-0)

Multiple Polymers Interacting with a Moving Wall

 \blacktriangleright The Polymers are Identical:

$$
k_+ c_{p1} = k_+ c_{p2} = k_+ c
$$

$$
k_{-p1} = k_{-p2} = k_-
$$

▶ Are the Polymers Independent?

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0)

[Fixed Wall](#page-30-0) [Moving Wall](#page-49-0) [Many Polymers](#page-59-0)

Multiple Polymers Interacting with a Moving Wall

 \blacktriangleright The Polymers are Identical:

$$
k_+ c_{p1} = k_+ c_{p2} = k_+ c
$$

$$
\blacktriangleright k_{-p1} = k_{-p2} = k_-
$$

 \blacktriangleright Are the Polymers Independent?

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0)

[Fixed Wall](#page-30-0) [Moving Wall](#page-49-0) [Many Polymers](#page-59-0)

Multiple Polymers Interacting with a Moving Wall If the Polymers are Independent:

 \triangleright Steady State Distribution for each Polymer should be the same as in the Single-Polymer Case:

$$
p_{1_i} = p_{2_i} = \frac{\alpha - \beta}{\alpha} \left(\frac{\beta}{\alpha}\right)^i
$$

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0)

Multiple Polymers Interacting with a Moving Wall If the Polymers are Independent:

 \triangleright Steady State Distribution for each Polymer should be the same as in the Single-Polymer Case:

$$
p_{1_i} = p_{2_i} = \frac{\alpha - \beta}{\alpha} \left(\frac{\beta}{\alpha}\right)^i
$$

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0)

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & **Simulations**

[Current Research](#page-29-0)

KORK EXTERICATES

Polymer Cooperation

Polymers are not Independent \Rightarrow Cooperation! How? (Mathematically)

 \blacktriangleright Look at the Polymers from the Point of View of the Wall.

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0)

[Fixed Wall](#page-30-0) [Moving Wall](#page-49-0) [Many Polymers](#page-59-0)

Polymer Cooperation

Polymers are not Independent \Rightarrow Cooperation! How? (Mathematically)

 \blacktriangleright Look at the Polymers from the Point of View of the Wall.

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0) [Fixed Wall](#page-30-0)

[Moving Wall](#page-49-0) [Many Polymers](#page-59-0)

Polymer Cooperation - 2D Random Walk

Polymer Motion from Wall's POV - Gap Distances

Rates of motion are given by:

(Origin represents both polymers touching the wall)

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0)

[Fixed Wall](#page-30-0) [Moving Wall](#page-49-0) [Many Polymers](#page-59-0)

A DIA K F A REIN A RIA K DIA K DIA R

Polymer Cooperation - 2D Random Walk

 $p(x, y, t)$ - gap 1 distance is x, gap 2 distance is y, at time t

$$
p_t(x, y, t) = \alpha_p (p(x + \Delta x, y, t) + p(x, y + \Delta y, t))
$$

+ $\beta_p (p(x - \Delta x, y, t) + p(x, y - \Delta y, t))$
+ $\alpha_w p(x + \Delta x, y + \Delta y, t)$
+ $\beta_w p(x - \Delta x, y - \Delta y, t)$
- $(2\alpha_p + 2\beta_p + \alpha_w + \beta_w) p(x, y, t)$

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & **Simulations**

[Current Research](#page-29-0) [Fixed Wall](#page-30-0) [Moving Wall](#page-49-0) [Many Polymers](#page-59-0)

Polymer Cooperation - Another View

Smallest Cycle

$$
\gamma = \frac{\beta_{\text{w}} \alpha_{\text{p}}^2}{\alpha_{\text{w}} \beta_{\text{p}}^2}
$$

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & **Simulations**

[Current Research](#page-29-0)

[Fixed Wall](#page-30-0) [Moving Wall](#page-49-0) [Many Polymers](#page-59-0)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 Q ·
Polymer Cooperation - Another View

Smallest Cycle $\log \gamma = \log \frac{\beta_w \alpha_p^2}{\alpha^2}$ $\frac{\beta_{\sf w} {\alpha_{\sf p}}^2}{\alpha_{\sf w} {\beta_{\sf p}}^2} = \log \bigg(\frac{\alpha_{\sf p}}{\beta_{\sf p}}$ $\beta_{\texttt{p}}$ $\bigg)^2 - \log \frac{\alpha_w}{2}$ $\beta_{\sf w}$ $= 2 \log \frac{\alpha_p}{a}$ $\beta_{\texttt{p}}$ $-\log \frac{\alpha_w}{\alpha}$ β_w

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0) [Fixed Wall](#page-30-0) [Moving Wall](#page-49-0) [Many Polymers](#page-59-0)

Polymer Cooperation - Another View

Smallest Cycle - Force Connection

$$
\frac{k_B T}{\Delta x} \log \gamma = \frac{k_B T}{\Delta x} \left(2 \log \frac{\alpha_p}{\beta_p} - \log \frac{\alpha_w}{\beta_w} \right)
$$

Net Force = Force of 2 Polymers – Force of Wall

[Polymer Growth](#page-0-0) Simulation

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0)

[Fixed Wall](#page-30-0) [Moving Wall](#page-49-0) [Many Polymers](#page-59-0)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 Q ©

The End

Questions?

[Polymer Growth](#page-0-0) **Simulation**

Christine Lind

[Introduction](#page-2-0)

[Mathematical](#page-10-0) Model & Simulations

[Current Research](#page-29-0) [Fixed Wall](#page-30-0) [Moving Wall](#page-49-0) [Many Polymers](#page-59-0)

K ロ X K 個 X X 할 X X 할 X (할 X) 299