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What are Molecular Motors?

Protein molecules in the cell that:

I generate force

I cause transport
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Conventional Molecular Motors

Conventional Molecular Motors

move along polymer tracks

I myosin - actin microfilaments

I kinesin - tubulin microtubules
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Polymerization as a Motor

Another way to cause motion/transport

I POLYMERIZATION-or-DEPOLYMERIZATION !

I (adding or subtracting monomers)
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Polymerization as a Motor - Biological
Examples

Chromosome Transport During Anaphase

Depolymerization of Spindle Pulls Sister Chromatids Apart:
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Polymerization as a Motor - Biological
Examples

Cell Membrane Deformation

Sickle Hemoglobin Polymerization creates Sickle Cells:
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Polymerization as a Motor

How does Polymerization Work?

Rate Constants:
k+: second order rate constant of adding a monomer
k−: first order rate constant of subtracting a monomer
c : concentration of monomers in surrounding solution
Note:
Adding/Subtracting monomers may actually require ATP
hydrolysis, but this will not be included in our model.

k+c

k−



Polymer Growth
Simulation

Christine Lind

Introduction

Mathematical
Model &
Simulations

Random Walk -
Discrete Time

Random Walk -
Continuous Time

Brownian Motion

Current Research

Outline

Introduction
What are Molecular Motors?
Conventional Molecular Motors
Polymerization as a Molecular Motor

Mathematical Model & Simulations
Random Walk - Discrete Time
Random Walk - Continuous Time
Brownian Motion

Current Research
Fixed Wall
Moving Wall
Many Polymers



Polymer Growth
Simulation

Christine Lind

Introduction

Mathematical
Model &
Simulations

Random Walk -
Discrete Time

Random Walk -
Continuous Time

Brownian Motion

Current Research

Polymerization as a Random Walk -
Discrete Time

Random Walk Model

∆x - width of each monomer
∆t - size of discrete time step
l(t) - length of the polymer
l(0) = m∆x - inital polymer has m monomers
If l(t) reaches zero, then the polymer is gone, and can no
longer grow or shrink.

k+c

k−
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Random Walk Model

At each time step either:

I Add one monomer with probability k+c∆t

I Subtract one monomer with probability k−∆t

Then l(t + ∆t) = l(t)±∆x .

Note:

Let ∆t = 1
k−+k+c so that the total probability at each time

step is one:

P(−) + P(+) =
k−

k− + k+c
+

k+c

k− + k+c
=

k− + k+c

k− + k+c
= 1
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Random Walk - Discrete Time Simulation

Simulation Procedure

Let num− = k−∆t
At each time step, generate u, a uniform(0,1) random
number:

Table: Algorithm for deciding which event occurs.

Condition Action

0 ≤ u < num− subtract a monomer
num− ≤ u ≤ 1 add a monomer

k+c

k−
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Polymerization as a Random Walk -
Continuous Time

Random Walk Model with Continuous Time

I Discrete Time Model is not very realistic. Assume that:

1. Adding or Subtracting events are independent
2. In a small amount of time dt:

I Pone event(dt) = λdt + o(dt)
I Pno events(dt) = 1− λdt + o(dt)

I Number of Events in time t is modeled as a Poisson
Process!

I Rate: λ = k− + k+c

I ∆t is now random
I Inter-arrival times have exponential(rate=λ) distribution

k+c

k−



Polymer Growth
Simulation

Christine Lind

Introduction

Mathematical
Model &
Simulations

Random Walk -
Discrete Time

Random Walk -
Continuous Time

Brownian Motion

Current Research

Polymerization as a Random Walk -
Continuous Time

Random Walk Model with Continuous Time

I Discrete Time Model is not very realistic. Assume that:

1. Adding or Subtracting events are independent
2. In a small amount of time dt:

I Pone event(dt) = λdt + o(dt)
I Pno events(dt) = 1− λdt + o(dt)

I Number of Events in time t is modeled as a Poisson
Process!

I Rate: λ = k− + k+c

I ∆t is now random
I Inter-arrival times have exponential(rate=λ) distribution

k+c

k−



Polymer Growth
Simulation

Christine Lind

Introduction

Mathematical
Model &
Simulations

Random Walk -
Discrete Time

Random Walk -
Continuous Time

Brownian Motion

Current Research

Polymerization as a Random Walk -
Continuous Time

Random Walk Model with Continuous Time

I Discrete Time Model is not very realistic. Assume that:

1. Adding or Subtracting events are independent
2. In a small amount of time dt:
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Continuous Time Simulation

Poisson Process

I Has density function

P (N(t) = k) =
(λt)k

k!
e−λt

I Often used to describe the number of events that occur
in an amount of time t.

I Time between events, τ , given by exponential(rate=λ):

P (τ = t) = λe−λt
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Generation of an Exponential from a Uniform

Let U be a uniform(0,1) random variable, and 1
λ > 0, then

X = − 1

λ
log U

is an exponential(rate=λ) random variable

k+c

k−
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Simulation Set-up

Let the following formulas hold:

I P(−) = k−
k−+k+c = k−

λ

I P(+) = k+c
k−+k+c = k+c

λ

I num− = k−
λ

Note that the total probability is still one:

P(−) + P(+) =
k−
λ

+
k+c

λ
=

k− + k+c

k− + k+c
= 1

k+c

k−
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Simulation Procedure

For each event-time pair:

1. Generate two uniform(0,1) random numbers, u1, u2.

2. Use u1 to generate the interarrival time, τ , for the event
using τ = − 1

λ log u1.

3. Use u2 to decide whether the event will be addition or
subtraction:

- If 0 ≤ u2 < num− then subtract a monomer.
- If num− ≤ u2 ≤ 1 then add a monomer.

4. Record the i th event time ti = ti−1 + τ and the location
of the end of the polymer xi = xi−1 ±∆x , where ± is
determined by Step 3.



Polymer Growth
Simulation

Christine Lind

Introduction

Mathematical
Model &
Simulations

Random Walk -
Discrete Time

Random Walk -
Continuous Time

Brownian Motion

Current Research

Random Walk - Continuous Time
Simulation



Polymer Growth
Simulation

Christine Lind

Introduction

Mathematical
Model &
Simulations

Random Walk -
Discrete Time

Random Walk -
Continuous Time

Brownian Motion

Current Research

Brownian Motion

Random Walk - Brownian Motion Connection

Let α = k+c , β = k−.
p(x , t):probability that the polymer has length x at time t
(continuous time)

I pt(x , t) = αp(x−∆x , t)+βp(x +∆x , t)−(α+β)p(x , t)

k+c

k−
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Let α = k+c , β = k−.
p(x , t):probability that the polymer has length x at time t
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Brownian Motion

Random Walk - Brownian Motion Connection

I Taylor Expansion & Some Algebra:

pt(x , t) = (α + β)
(∆x)2

2
pxx(x , t)

− (α− β)∆x px(x , t)

+ higher order terms in ∆x

I Let ∆x → 0:

lim
∆x→0

(α + β)
(∆x)2

2
= D lim

∆x→0
(α− β)∆x = V
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Brownian Motion

Random Walk - Brownian Motion Connection

I Then we obtain

pt(x , t) = Dpxx(x , t)− Vpx(x , t)

I The Diffusion Equation with Drift!

I Will allow us to answer more questions later...
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Polymer Interacting with a Fixed Wall

Let x = w be the position of the fixed wall.
Polymer (and Simulation) behaves as before, but with
additional constraints:

I If w − x < ∆x then a monomer cannot be added.

I If a monomer is to be added and w − x < ∆x , then
polymer length remains the same at that time.

k+c

k−
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Gap Distribution

We can also model the gap distance using the diffusion
equation with drift:

I pt = Dpxx + Vpx

D = (k+c + k−) V = (k+c − k−)

I Note that the sign on V is different than before.

I We can solve for the steady state solution

k+c

k−
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Steady State Gap Distribution - Brownian Motion

0 = Duxx + Vux

Need two conditions:

I No-Flux Boundary Condition at x=0:

Dux + Vu = 0

I Normalization: ∫ ∞

0
u(x)dx = 1

I Steady-State Solution:

u(x) =
V

D
e−

V
D

x

I Note: This model is spatially continuous system...
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Steady State Gap Distribution - Brownian Motion

Let pi denote the probability that the gap distance is i :

α = k+c
k+c+k−

β = k−
k+c+k−

I pi = αpi+1 + βpi−1

k+c

k−
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Let pi = µi :

I µ = αµ2 + β

I Quadratic Equation & α + β = 1:

µ1 = 1, µ2 =
β

α

I Then we know that the system must be of the form

pi = a

(
β

α

)i

+ b
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Steady State Gap Distribution - Random Walk

We can apply the normalization condition:

∞∑
i=0

pi =
∞∑
i=0

(a

(
β

α

)i

+ b) = 1

I The sum must converge, so b = 0

I We are left with a geometric series:

a
∞∑
i=0

(
β

α

)i

= a
1

1− β
α

= 1

I Spatially Discrete Steady State Solution:

pi =
α− β

α

(
β

α

)i
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Wall Moves According to a Random Walk

w+ - rate that the wall moves towards the polymer
w− - rate the wall moves away from the polymer

g - gap distance
λp = k+c + k− - Poisson Process rate for the polymer
λw = w+ + w− - Poisson Process rate for the wall

k+c

k−

w+
w−
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Polymer Interacting with a Moving Wall

Polymer and Wall both follow random walks with
constraints:

I If g < ∆x then a monomer cannot be added and the
wall cannot move towards the polymer.

I If a monomer is to be added (wall is to move towards
the polymer) and g < ∆x , then polymer length (wall
position) remains the same at that time.

k+c

k−

w+
w−
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Simulation Including a Moving Wall

Steady State Gap Distribution - Random Walk

Let pi denote the probability that the gap distance is i , and
let

αp = k+c
k+c+k−+w+w−

βp = k−
k+c+k−+w+w−

αw = w+

k+c+k−+w+w−
βw = w−

k+c+k−+w+w−

I pi = (αp + αw )pi+1 + (βp + βw )pi−1

(There are now 2 ways that gap distance can change)

k+c

k−

w+
w−
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Steady State Gap Distribution - Random Walk

Let α = αp + αw , and β = βp + βw

Then we can see that

pi = (αp + αw )pi+1 + (βp + βw )pi−1

= αpi+1 + βpi−1

This is exactly the same equation we had before!
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Steady State Gap Distribution - Random Walk

We already know the Steady State Distribution:

pi =
α− β

α

(
β

α

)i

where:
α = (k+c + w+) β = (k− + w−)
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Multiple Polymers Interacting with a Moving Wall

w+ - rate that the wall moves towards the polymers
w− - rate the wall moves away from the polymers

λp = k+c + k− - Poisson Process rate for each polymer
λw = w+ + w− - Poisson Process rate for the wall

k+c

k−

w+
w−
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Multiple Polymers Interacting with a Moving Wall

I The Polymers are Identical :
I k+cp1 = k+cp2 = k+c
I k−p1 = k−p2 = k−

I Are the Polymers Independent?

k+c

k−

w+
w−
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Multiple Polymers Interacting with a Moving Wall

If the Polymers are Independent:

I Steady State Distribution for each Polymer should be
the same as in the Single-Polymer Case:

p1i = p2i =
α− β

α

(
β

α

)i

k+c

k−

w+
w−



Polymer Growth
Simulation

Christine Lind

Introduction

Mathematical
Model &
Simulations

Current Research

Fixed Wall

Moving Wall

Many Polymers

Simulation with many Polymers

Multiple Polymers Interacting with a Moving Wall

If the Polymers are Independent:

I Steady State Distribution for each Polymer should be
the same as in the Single-Polymer Case:

p1i = p2i =
α− β

α

(
β

α

)i

k+c

k−

w+
w−



Polymer Growth
Simulation

Christine Lind

Introduction

Mathematical
Model &
Simulations

Current Research

Fixed Wall

Moving Wall

Many Polymers

Simulation with many Polymers



Polymer Growth
Simulation

Christine Lind

Introduction

Mathematical
Model &
Simulations

Current Research

Fixed Wall

Moving Wall

Many Polymers

Simulation with many Polymers

Polymer Cooperation

Polymers are not Independent ⇒ Cooperation!
How? (Mathematically)

I Look at the Polymers from the Point of View of the
Wall.

k+c

k−

w+
w−
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Polymer Cooperation - 2D Random Walk

Polymer Motion from Wall’s POV - Gap Distances

Rates of motion are given by:

polymer moves wall moves

αp - towards wall αw - towards polymer
βp - away from wall βw - away from polymer

(Origin represents both polymers touching the wall)

Polymer 1 Dist. from Wall

P
o
ly

m
er

2
D

is
t.

fr
o
m

W
a
ll

βpβw

βp

αp
αw

αp
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Polymer Cooperation - 2D Random Walk

p(x , y , t) - gap 1 distance is x , gap 2 distance is y, at time t

pt(x , y , t) = αp (p(x + ∆x , y , t) + p(x , y + ∆y , t))

+ βp (p(x −∆x , y , t) + p(x , y −∆y , t))

+ αw p(x + ∆x , y + ∆y , t)

+ βw p(x −∆x , y −∆y , t)

− (2αp + 2βp + αw + βw ) p(x , y , t)

⇒ PDE...

Polymer 1 Dist. from Wall

P
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ly
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er

2
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βpβw

βp

αp
αw
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Polymer Cooperation - Another View

Smallest Cycle

Net Motion Physical Result Condition

Clockwise polymer pushes wall γ > 1
Counterclockwise wall pushes polymer γ < 1

None balance γ = 1

γ =
βwαp

2

αwβp
2

βp

βpαw

αp

αp

βw
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Polymer Cooperation - Another View

Smallest Cycle

log γ = log
βwαp

2

αwβp
2

= log

(
αp

βp

)2

− log
αw

βw

= 2 log
αp

βp
− log

αw

βw

βp

βpαw

αp

αp

βw
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Polymer Cooperation - Another View

Smallest Cycle - Force Connection

Net Motion Physical Result Condition

Clockwise polymer pushes wall log γ > 0
Counterclockwise wall pushes polymer log γ < 0

None balance log γ = 0

kBT

∆x
log γ =

kBT

∆x

(
2 log

αp

βp
− log

αw

βw

)
Net Force = Force of 2 Polymers− Force of Wall

βp

βpαw

αp

αp

βw
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The End

Questions?
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