Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research

Polymer Growth Simulation

Assembly Against a Force

Christine Lind

University of Washington Department of Applied Mathematics

June 2, 2005

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Outline

Introduction

What are Molecular Motors? Conventional Molecular Motors Polymerization as a Molecular Motor

Mathematical Model & Simulations

Random Walk - Discrete Time Random Walk - Continuous Time Brownian Motion

Current Research

Fixed Wall Moving Wall Many Polymers Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

What are Molecular Motors?

Protein molecules in the cell that:

- generate force
- cause transport

Image (c) MedicalEngineer.co.uk & V F Murphy 2004

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Polymer Growth Simulation

Christine Lind

Introduction

What are Molecular Motors? Conventional Molecular Motors Polymerization as a Molecular Motor

Mathematical Model & Simulations

Conventional Molecular Motors

Myosin

Muscle Contraction

Polymer Growth Simulation

Christine Lind

Introduction

sarcomere

thick filament

(myosin filament)

thin filament

(actin filament)

くしゃ 本語 そうか 本語 くらす

Conventional Molecular Motors

Kinesin

Intracellular Transport

Polymer Growth Simulation

Christine Lind

Introduction

What are Molecular Motors?

Conventional Molecular Motors

Polymerization as a Molecular Motor

Mathematical Model & Simulations

Current Research

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ つ へ ()

Conventional Molecular Motors

Polymer Growth Simulation

Christine Lind

Introduction

What are Molecular Motors?

Conventional Molecular Motors

Polymerization as a Molecular Motor

Mathematical Model & Simulations

Current Research

・ロト・日本・山田・ 山田・ 山田・

Polymerization as a Motor

Another way to cause motion/transport

(adding or subtracting monomers)

POLYMERIZATION-or-DEPOLYMERIZATION !

monomer

Polymerization

Polymer Growth Simulation

Christine Lind

Introduction

What are Molecular Motors? Conventional Molecular Motors Polymerization as a Molecular Motor

Mathematical Model & Simulations

Polymerization as a Motor - Biological Examples

Polymer Growth Simulation

Christine Lind

Introduction

What are Molecular Motors? Conventional Molecular Motors Polymerization as a Molecular Motor

Mathematical Model & Simulations

Current Research

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Polymerization as a Motor - Biological Examples

Sickle Hemoglobin Polymerization creates Sickle Cells:

Cell Membrane Deformation

Polymer Growth Simulation

Christine Lind

Introduction

What are Molecular Motors? Conventional Molecular Motors Polymerization as a Molecular Motor

Mathematical Model & Simulations

Current Research

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

How does Polymerization Work?

Rate Constants:

 k_+ : second order rate constant of adding a monomer

- k_{-} : first order rate constant of subtracting a monomer
- *c*: concentration of monomers in surrounding solution Note:

Adding/Subtracting monomers may actually require ATP hydrolysis, but this will not be included in our model.

Polymer Growth Simulation

Christine Lind

Introduction

What are Molecular Motors? Conventional Molecular Motors Polymerization as a Molecular Motor

Mathematical Model & Simulations

Outline

ntroduction What are Molecular Motors? Conventional Molecular Motors Polymerization as a Molecular Motor

Mathematical Model & Simulations Random Walk - Discrete Time Random Walk - Continuous Time Brownian Motion

Current Research Fixed Wall Moving Wall Many Polymers Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Random Walk -Discrete Time Random Walk -Continuous Time Brownian Motion

Current Research

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Polymerization as a Random Walk - Discrete Time

Random Walk Model

 Δx - width of each monomer Δt - size of discrete time step l(t) - length of the polymer $l(0) = m\Delta x$ - initial polymer has *m* monomers If l(t) reaches zero, then the polymer is gone, and can no longer grow or shrink.

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Random Walk -Discrete Time

Random Walk -Continuous Time Brownian Motion

Current Research

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Polymerization as a Random Walk - Discrete Time

Random Walk Model

At each time step either:

- Add one monomer with probability $k_+ c \Delta t$
- Subtract one monomer with probability $k_-\Delta t$

Then $l(t + \Delta t) = l(t) \pm \Delta x$.

Note:

Let $\Delta t = \frac{1}{k_{-}+k_{+}c}$ so that the total probability at each time step is one:

$$P(-) + P(+) = \frac{k_{-}}{k_{-} + k_{+}c} + \frac{k_{+}c}{k_{-} + k_{+}c} = \frac{k_{-} + k_{+}c}{k_{-} + k_{+}c} = 1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Random Walk -Discrete Time

Random Walk -Continuous Time Brownian Motion

Polymerization as a Random Walk - Discrete Time

Random Walk Model

At each time step either:

- Add one monomer with probability $k_+ c \Delta t$
- Subtract one monomer with probability $k_{-}\Delta t$

Then $l(t + \Delta t) = l(t) \pm \Delta x$.

Note:

Let $\Delta t = \frac{1}{k_- + k_+ c}$ so that the total probability at each time step is one:

$$P(-) + P(+) = rac{k_-}{k_- + k_+ c} + rac{k_+ c}{k_- + k_+ c} = rac{k_- + k_+ c}{k_- + k_+ c} = 1$$

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Random Walk -Discrete Time

Random Walk -Continuous Time Brownian Motion

Current Research

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Random Walk - Discrete Time Simulation

Simulation Procedure

Let $num_{-} = k_{-}\Delta t$ At each time step, generate u, a uniform(0,1) random number:

Table: Algorithm for deciding which event occurs.

Condition	Action
$0 \leq u < num_{-}$	subtract a monomer
$\mathit{num}_{-} \leq \mathit{u} \leq 1$	add a monomer

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Random Walk -Discrete Time

Random Walk -Continuous Time Brownian Motion

Random Walk - Discrete Time Simulation

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Random Walk -Discrete Time

Random Walk -Continuous Time Brownian Motion

Current Research

◆□ > ◆□ > ◆三 > ◆三 > →□ > ● ●

Polymerization as a Random Walk -Continuous Time

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Random Walk -Discrete Time Random Walk -Continuous Time Brownian Motion

Current Research

Random Walk Model with Continuous Time

- Discrete Time Model is not very realistic. Assume that:
 - 1. Adding or Subtracting events are independent
 - 2. In a small amount of time dt:
 - $P_{\text{one event}}(dt) = \lambda dt + o(dt)$
 - $P_{\text{no events}}(dt) = 1 \lambda dt + o(dt)$
- Number of Events in time t is modeled as a Poisson Process!
 - Rate: $\lambda = k_{-} + k_{+}c_{-}$
- Δt is now random

Inter-arrival times have exponential(rate=λ) distribution

Polymerization as a Random Walk -Continuous Time

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Random Walk -Discrete Time Random Walk -Continuous Time Brownian Motion

Current Research

Random Walk Model with Continuous Time

- Discrete Time Model is not very realistic. Assume that:
 - 1. Adding or Subtracting events are independent
 - 2. In a small amount of time dt:

•
$$P_{\text{one event}}(dt) = \lambda dt + o(dt)$$

•
$$P_{\text{no events}}(dt) = 1 - \lambda dt + o(dt)$$

Number of Events in time t is modeled as a Poisson Process!

• Rate:
$$\lambda = k_- + k_+ c$$

• Δt is now random

Inter-arrival times have exponential(rate=λ) distribution

Polymerization as a Random Walk -Continuous Time

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Random Walk -Discrete Time Random Walk -Continuous Time Brownian Motion

Current Research

Random Walk Model with Continuous Time

- Discrete Time Model is not very realistic. Assume that:
 - 1. Adding or Subtracting events are independent
 - 2. In a small amount of time dt:

•
$$P_{\text{one event}}(dt) = \lambda dt + o(dt)$$

•
$$P_{\text{no events}}(dt) = 1 - \lambda dt + o(dt)$$

Number of Events in time t is modeled as a Poisson Process!

• Rate:
$$\lambda = k_- + k_+ c$$

- Δt is now random
 - Inter-arrival times have exponential(rate= λ) distribution

Continuous Time Simulation

Poisson Process

Has density function

$$P(N(t) = k) = \frac{(\lambda t)^k}{k!}e^{-\lambda t}$$

- Often used to describe the number of events that occur in an amount of time t.
- Time between events, τ , given by exponential(rate= λ):

$$P\left(\tau=t\right)=\lambda e^{-\lambda t}$$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Random Walk -Discrete Time Random Walk -Continuous Time Brownian Motion

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Random Walk -Discrete Time Random Walk -Continuous Time Brownian Motion

Current Research

Generation of an Exponential from a Uniform

Let U be a uniform(0,1) random variable, and $\frac{1}{\lambda} > 0$, then

$$X=-rac{1}{\lambda}\log U$$

is an exponential(rate= λ) random variable

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Simulation Set-up

Let the following formulas hold:

$$P(-) = \frac{k_{-}}{k_{-}+k_{+}c} = \frac{k_{-}}{\lambda}$$

$$P(+) = \frac{k_{+}c}{k_{-}+k_{+}c} = \frac{k_{+}c}{\lambda}$$

•
$$num_{-} = \frac{k_{-}}{\lambda}$$

Note that the total probability is still one:

$$P(-) + P(+) = rac{k_-}{\lambda} + rac{k_+c}{\lambda} = rac{k_- + k_+c}{k_- + k_+c} = 1$$

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Random Walk -Discrete Time Random Walk -Continuous Time Brownian Motion

Simulation Procedure

For each event-time pair:

- **1.** Generate two uniform(0,1) random numbers, u_1, u_2 .
- 2. Use u_1 to generate the interarrival time, τ , for the event using $\tau = -\frac{1}{\lambda} \log u_1$.
- Use u₂ to decide whether the event will be addition or subtraction:
 - If $0 \le u_2 < num_-$ then subtract a monomer.
 - If $num_{-} \leq u_2 \leq 1$ then add a monomer.
- 4. Record the *i*th event time $t_i = t_{i-1} + \tau$ and the location of the end of the polymer $x_i = x_{i-1} \pm \Delta x$, where \pm is determined by Step 3.

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Random Walk -Discrete Time Random Walk -Continuous Time Brownian Motion

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Random Walk -Discrete Time Random Walk -Continuous Time Brownian Motion

Current Research

メリアメロアアメミアメミア モー かべの

Random Walk - Brownian Motion Connection

Let $\alpha = k_+c$, $\beta = k_-$. p(x, t):probability that the polymer has length x at time t (continuous time)

$$\triangleright p_t(x,t) = \alpha p(x - \Delta x, t) + \beta p(x + \Delta x, t) - (\alpha + \beta) p(x, t)$$

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Random Walk -Discrete Time Random Walk -Continuous Time Brownian Motion

Current Research

・ロト ・西ト ・ヨト ・ヨト ・ ウタマ

Random Walk - Brownian Motion Connection

Let $\alpha = k_+c$, $\beta = k_-$. p(x, t):probability that the polymer has length x at time t (continuous time)

$$\triangleright p_t(x,t) = \alpha p(x - \Delta x, t) + \beta p(x + \Delta x, t) - (\alpha + \beta) p(x, t)$$

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Random Walk -Discrete Time Random Walk -Continuous Time Brownian Motion

Current Research

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Random Walk - Brownian Motion Connection

Taylor Expansion & Some Algebra:

$$p_t(x,t) = (\alpha + \beta) \frac{(\Delta x)^2}{2} p_{xx}(x,t) - (\alpha - \beta) \Delta x p_x(x,t)$$

+ higher order terms in Δx

• Let $\Delta x \rightarrow 0$:

$$\lim_{\Delta x \to 0} (\alpha + \beta) \frac{(\Delta x)^2}{2} = D \qquad \lim_{\Delta x \to 0} (\alpha - \beta) \Delta x = V$$

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Random Walk -Discrete Time Random Walk -Continuous Time Brownian Motion

Current Research

うしん 前 ふかく ボット 間マネー

Random Walk - Brownian Motion Connection

Taylor Expansion & Some Algebra:

$$p_t(x,t) = (\alpha + \beta) \frac{(\Delta x)^2}{2} p_{xx}(x,t) - (\alpha - \beta) \Delta x p_x(x,t)$$

+ higher order terms in Δx

• Let
$$\Delta x \rightarrow 0$$
:

$$\lim_{\Delta x \to 0} (\alpha + \beta) \frac{(\Delta x)^2}{2} = D \qquad \lim_{\Delta x \to 0} (\alpha - \beta) \Delta x = V$$

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Random Walk -Discrete Time Random Walk -Continuous Time Brownian Motion

Current Research

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Random Walk - Brownian Motion Connection

Then we obtain

$$p_t(x,t) = Dp_{xx}(x,t) - Vp_x(x,t)$$

- The Diffusion Equation with Drift!
- Will allow us to answer more questions later...

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Random Walk -Discrete Time Random Walk -Continuous Time Brownian Motion

Current Research

・ロト・日本・山田・山田・山田・

Outline

ntroduction What are Molecular Motors? Conventional Molecular Motors Polymerization as a Molecular Motor

Mathematical Model & Simulations Random Walk - Discrete Time Random Walk - Continuous Time Brownian Motion

Current Research

Fixed Wall Moving Wall Many Polymers Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research

Fixed Wall Moving Wall Many Polymers

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Polymer Interacting with a Fixed Wall

Let x = w be the position of the fixed wall. Polymer (and Simulation) behaves as before, but with additional constraints:

• If $w - x < \Delta x$ then a monomer cannot be added.

If a monomer is to be added and w − x < ∆x, then polymer length remains the same at that time.

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research

Fixed Wall Moving Wall Many Polymers

くしゃ 本語 そうか 本語 くらす

Polymer Interacting with a Fixed Wall

Let x = w be the position of the fixed wall. Polymer (and Simulation) behaves as before, but with additional constraints:

- If $w x < \Delta x$ then a monomer cannot be added.
- If a monomer is to be added and w − x < Δx, then polymer length remains the same at that time.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ ● ・ く ロ ・

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research

Fixed Wall Moving Wall Many Polymers

.

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research

Fixed Wall Moving Wall Many Polymers

Gap Distribution

We can also model the gap distance using the diffusion equation with drift:

$$\triangleright p_t = Dp_{xx} + Vp_x$$

$$D = (k_+c + k_-)$$
 $V = (k_+c - k_-)$

Note that the sign on V is different than before.We can solve for the steady state solution

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research

Fixed Wall Moving Wall Many Polymers

・ロト・西ト・ヨト・ 白・ うへぐ

Gap Distribution

We can also model the gap distance using the diffusion equation with drift:

$$\triangleright p_t = Dp_{xx} + Vp_x$$

$$D = (k_+c + k_-)$$
 $V = (k_+c - k_-)$

Note that the sign on V is different than before.

We can solve for the steady state solution

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research

Fixed Wall Moving Wall Many Polymers

・ロト・西ト・ヨト・ 白・ うへぐ

Gap Distribution

We can also model the gap distance using the diffusion equation with drift:

$$\triangleright p_t = Dp_{xx} + Vp_x$$

$$D = (k_+c + k_-)$$
 $V = (k_+c - k_-)$

Note that the sign on V is different than before.

We can solve for the steady state solution

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research

Fixed Wall Moving Wall Many Polymers

◆□▶ ◆□▶ ◆目▶ ◆目▶ = 三 のへ⊙
Steady State Gap Distribution - Brownian Motion

 $0 = Du_{xx} + Vu_x$ Need two conditions:

No-Flux Boundary Condition at x=0:

$$Du_x + Vu = 0$$

Normalization:

$$\int_0^\infty u(x)dx = 1$$

Steady-State Solution:

$$u(x) = \frac{V}{D}e^{-\frac{V}{D}x}$$

Note: This model is spatially continuous system...

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research

Steady State Gap Distribution - Brownian Motion

 $0 = Du_{xx} + Vu_x$ Need two conditions:

No-Flux Boundary Condition at x=0:

$$Du_x + Vu = 0$$

Normalization:

$$\int_0^\infty u(x)dx = 1$$

Steady-State Solution:

$$u(x) = \frac{V}{D}e^{-\frac{V}{D}x}$$

Note: This model is spatially continuous system...

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research

Steady State Gap Distribution - Brownian Motion

 $0 = Du_{xx} + Vu_x$ Need two conditions:

No-Flux Boundary Condition at x=0:

$$Du_x + Vu = 0$$

Normalization:

$$\int_0^\infty u(x)dx=1$$

Steady-State Solution:

$$u(x) = \frac{V}{D}e^{-\frac{V}{D}x}$$

Note: This model is spatially continuous system...

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research

Steady State Gap Distribution - Brownian Motion Let p_i denote the probability that the gap distance is *i*:

$$\alpha = \frac{k_+ c}{k_+ c + k_-} \qquad \beta = \frac{k_-}{k_+ c + k_-}$$

 $\triangleright p_i = \alpha p_{i+1} + \beta p_{i-1}$

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research

Fixed Wall Moving Wall Many Polymers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Steady State Gap Distribution - Brownian Motion Let p_i denote the probability that the gap distance is *i*:

$$\alpha = \frac{k_+ c}{k_+ c + k_-} \qquad \beta = \frac{k_-}{k_+ c + k_-}$$

$$\triangleright p_i = \alpha p_{i+1} + \beta p_{i-1}$$

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research

Fixed Wall Moving Wall Many Polymers

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ つ へ ()

Steady State Gap Distribution - Random Walk

Let $p_i = \mu^i$:

$$\blacktriangleright \ \mu = \alpha \mu^2 + \beta$$

• Quadratic Equation & $\alpha + \beta = 1$:

$$\mu_1 = 1, \qquad \mu_2 = \frac{\beta}{\alpha}$$

Then we know that the system must be of the form

$$p_i = a \left(\frac{\beta}{\alpha}\right)^i + b$$

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research

Fixed Wall Moving Wall Many Polymers

・ロト ・四ト ・ヨト ・ヨー うへの

Steady State Gap Distribution - Random Walk

Let $p_i = \mu^i$:

$$\mu = \alpha \mu^2 + \beta$$

• Quadratic Equation & $\alpha + \beta = 1$:

$$\mu_1 = 1, \qquad \mu_2 = \frac{\beta}{\alpha}$$

Then we know that the system must be of the form

$$p_i = a \left(\frac{\beta}{\alpha}\right)^i + b$$

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research

Fixed Wall Moving Wall Many Polymers

・ロト ・四ト ・ヨト ・ヨー うへの

Steady State Gap Distribution - Random Walk

Let $p_i = \mu^i$:

$$\mu = \alpha \mu^2 + \beta$$

• Quadratic Equation & $\alpha + \beta = 1$:

$$\mu_1 = 1, \qquad \mu_2 = \frac{\beta}{\alpha}$$

Then we know that the system must be of the form

$$p_i = a \left(\frac{\beta}{\alpha}\right)^i + b$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research

Steady State Gap Distribution - Random Walk We can apply the normalization condition:

$$\sum_{i=0}^{\infty} p_i = \sum_{i=0}^{\infty} (a \left(rac{eta}{lpha}
ight)^i + b) = 1$$

• The sum must converge, so b = 0

▶ We are left with a geometric series:

$$a\sum_{i=0}^{\infty} \left(\frac{\beta}{\alpha}\right)^{i} = a\frac{1}{1-\frac{\beta}{\alpha}} = 1$$

Spatially Discrete Steady State Solution:

$$p_i = \frac{\alpha - \beta}{\alpha} \left(\frac{\beta}{\alpha}\right)'$$

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research

Steady State Gap Distribution - Random Walk We can apply the normalization condition:

$$\sum_{i=0}^{\infty} p_i = \sum_{i=0}^{\infty} (a \left(rac{eta}{lpha}
ight)^i + b) = 1$$

• The sum must converge, so b = 0

▶ We are left with a geometric series:

$$a\sum_{i=0}^{\infty} \left(\frac{\beta}{\alpha}\right)^{i} = a\frac{1}{1-\frac{\beta}{\alpha}} = 1$$

Spatially Discrete Steady State Solution:

$$p_i = \frac{\alpha - \beta}{\alpha} \left(\frac{\beta}{\alpha}\right)'$$

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research

Steady State Gap Distribution - Random Walk We can apply the normalization condition:

$$\sum_{i=0}^{\infty} p_i = \sum_{i=0}^{\infty} (a \left(rac{eta}{lpha}
ight)^i + b) = 1$$

• The sum must converge, so b = 0

We are left with a geometric series:

$$a\sum_{i=0}^{\infty} \left(\frac{\beta}{\alpha}\right)^i = a\frac{1}{1-\frac{\beta}{\alpha}} = 1$$

Spatially Discrete Steady State Solution:

$$p_i = \frac{\alpha - \beta}{\alpha} \left(\frac{\beta}{\alpha}\right)'$$

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research

Steady State Gap Distribution - Random Walk We can apply the normalization condition:

$$\sum_{i=0}^{\infty} p_i = \sum_{i=0}^{\infty} \left(a \left(\frac{\beta}{\alpha} \right)^i + b \right) = 1$$

• The sum must converge, so b = 0

We are left with a geometric series:

$$a\sum_{i=0}^{\infty} \left(\frac{\beta}{\alpha}\right)^i = a\frac{1}{1-\frac{\beta}{\alpha}} = 1$$

Spatially Discrete Steady State Solution:

$$p_i = \frac{\alpha - \beta}{\alpha} \left(\frac{\beta}{\alpha}\right)'$$

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research

Fixed Wall Moving Wall Many Polymers

▲目▶ 目 のへの

Wall Moves According to a Random Walk

 w_+ - rate that the wall moves towards the polymer w_- - rate the wall moves away from the polymer

g - gap distance $\lambda_p = k_+c + k_-$ - Poisson Process rate for the polymer $\lambda_w = w_+ + w_-$ - Poisson Process rate for the wall

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research Fixed Wall Moving Wall Many Polymers

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 ・ ○へ⊙

Polymer Interacting with a Moving Wall

Polymer and Wall both follow random walks with constraints:

- If g < ∆x then a monomer cannot be added and the wall cannot move towards the polymer.</p>
- If a monomer is to be added (wall is to move towards the polymer) and g < ∆x, then polymer length (wall position) remains the same at that time.

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research Fixed Wall Moving Wall Many Polymers

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Polymer Interacting with a Moving Wall

Polymer and Wall both follow random walks with constraints:

- If g < ∆x then a monomer cannot be added and the wall cannot move towards the polymer.</p>
- If a monomer is to be added (wall is to move towards the polymer) and g < ∆x, then polymer length (wall position) remains the same at that time.

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research Fixed Wall Moving Wall Many Polymers

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Polymer Interacting with a Moving Wall

Polymer and Wall both follow random walks with constraints:

- If g < ∆x then a monomer cannot be added and the wall cannot move towards the polymer.</p>
- If a monomer is to be added (wall is to move towards the polymer) and g < ∆x, then polymer length (wall position) remains the same at that time.

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research Fixed Wall Moving Wall Many Polymers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

Polymer Growth Simulation Christine Lind

Steady State Gap Distribution - **Random Walk** Let *p_i* denote the probability that the gap distance is *i*, and let

$$\alpha_{p} = \frac{k_{+}c}{k_{+}c_{+}k_{-}+w_{+}w_{-}} \qquad \beta_{p} = \frac{k_{-}}{k_{+}c_{+}k_{-}+w_{+}w_{-}} \alpha_{w} = \frac{w_{+}}{k_{+}c_{+}k_{-}+w_{+}w_{-}} \qquad \beta_{w} = \frac{w_{-}}{k_{+}c_{+}k_{-}+w_{+}w_{-}}$$

 $\triangleright p_i = (\alpha_p + \alpha_w)p_{i+1} + (\beta_p + \beta_w)p_{i-1}$

(There are now 2 ways that gap distance can change)

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research Fixed Wall Moving Wall Many Polymers

Steady State Gap Distribution - Random Walk Let *p_i* denote the probability that the gap distance is *i*, and let

$$\alpha_{p} = \frac{k_{+}c}{k_{+}c_{+}k_{-}+w_{+}w_{-}} \qquad \beta_{p} = \frac{k_{-}}{k_{+}c_{+}k_{-}+w_{+}w_{-}} \alpha_{w} = \frac{w_{+}}{k_{+}c_{+}k_{-}+w_{+}w_{-}} \qquad \beta_{w} = \frac{w_{-}}{k_{+}c_{+}k_{-}+w_{+}w_{-}}$$

$$\blacktriangleright p_i = (\alpha_p + \alpha_w)p_{i+1} + (\beta_p + \beta_w)p_{i-1}$$

(There are now 2 ways that gap distance can change)

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research Fixed Wall Moving Wall Many Polymers

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research

Moving Wall Many Polymers

Steady State Gap Distribution - Random Walk

Let $\alpha = \alpha_p + \alpha_w$, and $\beta = \beta_p + \beta_w$ Then we can see that

$$p_i = (\alpha_p + \alpha_w)p_{i+1} + (\beta_p + \beta_w)p_{i-1}$$
$$= \alpha_{p_{i+1}} + \beta_{p_{i-1}}$$

ション ふゆ アメリア ショー シック

This is exactly the same equation we had before!

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research

Fixed Wall Moving Wall Many Polymers

Steady State Gap Distribution - Random Walk

We already know the Steady State Distribution:

$$p_i = \frac{\alpha - \beta}{\alpha} \left(\frac{\beta}{\alpha}\right)^i$$

where:

$$\alpha = (\mathbf{k}_{+}\mathbf{c} + \mathbf{w}_{+}) \qquad \beta = (\mathbf{k}_{-} + \mathbf{w}_{-})$$

ション ふゆ アメリア ショー シック

Polymer Growth Simulation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ のへで

Multiple Polymers Interacting with a Moving Wall

 w_+ - rate that the wall moves towards the polymers w_- - rate the wall moves away from the polymers

 $\lambda_p = k_+ c + k_-$ - Poisson Process rate for each polymer $\lambda_w = w_+ + w_-$ - Poisson Process rate for the wall

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research Fixed Wall Moving Wall Many Polymers

Polymer Length and Gap Distance vs Time k_plus*c = 4, k_minus = 1, w_plus = 2, w_minus = 1, tmax = 10,000 Polymer Length 100 Moving Wall Polymer 1 Polymer 2 50 -20 40 60 80 100 10 9 Gap 1 8 Gap 2 Gap Distance 6 5 3 2 0 20 40 60 80 100 Time

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research

Fixed Wall Moving Wall Many Polymers

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Multiple Polymers Interacting with a Moving Wall

► The Polymers are *Identical*:

►
$$k_+c_{p1} = k_+c_{p2} = k_+c$$

► $k_-p_1 = k_-p_2 = k_-$

Are the Polymers Independent?

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research

Fixed Wall Moving Wall Many Polymers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Multiple Polymers Interacting with a Moving Wall

▶ The Polymers are *Identical*:

•
$$k_+c_{p1} = k_+c_{p2} = k_+c_{p2}$$

•
$$k_{-p1} = k_{-p2} = k_{-p2}$$

Are the Polymers Independent?

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research

Fixed Wall Moving Wall Many Polymers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Multiple Polymers Interacting with a Moving Wall

▶ The Polymers are *Identical*:

•
$$k_+c_{p1} = k_+c_{p2} = k_+c_{p2}$$

•
$$k_{-p1} = k_{-p2} = k_{-p2}$$

Are the Polymers Independent?

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research

Fixed Wall Moving Wall Many Polymers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Multiple Polymers Interacting with a Moving Wall If the Polymers are *Independent*:

Steady State Distribution for each Polymer should be the same as in the Single-Polymer Case:

$$p_{1_i} = p_{2_i} = \frac{\alpha - \beta}{\alpha} \left(\frac{\beta}{\alpha} \right)$$

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research

Multiple Polymers Interacting with a Moving Wall

If the Polymers are Independent:

Steady State Distribution for each Polymer should be the same as in the Single-Polymer Case:

$$p_{1_i} = p_{2_i} = \frac{\alpha - \beta}{\alpha} \left(\frac{\beta}{\alpha}\right)$$

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Polymer Growth Simulation

Polymer Cooperation

Polymers are not Independent \Rightarrow Cooperation! How? (Mathematically)

 Look at the Polymers from the Point of View of the Wall.

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research Fixed Wall Moving Wall Many Polymers

Polymer Cooperation

Polymers are not Independent \Rightarrow Cooperation! How? (Mathematically)

 Look at the Polymers from the Point of View of the Wall.

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research Fixed Wall Moving Wall Many Polymers

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Polymer Cooperation - 2D Random Walk

Polymer Motion from Wall's POV - Gap Distances

Rates of motion are given by:

polymer moves	wall moves	
α_p - towards wall	α_w - towards polymer	
β_{p} - away from wall	β_w - away from polymer	

(Origin represents both polymers touching the wall)

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research Fixed Wall Moving Wall Many Polymers

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○

Polymer Cooperation - 2D Random Walk

p(x, y, t) - gap 1 distance is x , gap 2 distance is y, at time t

$$p_t(x, y, t) = \alpha_p \left(p(x + \Delta x, y, t) + p(x, y + \Delta y, t) \right) + \beta_p \left(p(x - \Delta x, y, t) + p(x, y - \Delta y, t) \right) + \alpha_w p(x + \Delta x, y + \Delta y, t) + \beta_w p(x - \Delta x, y - \Delta y, t) - \left(2\alpha_p + 2\beta_p + \alpha_w + \beta_w \right) p(x, y, t)$$

 $\Rightarrow \mathsf{PDE...}$

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research Fixed Wall Moving Wall Many Polymers

Polymer Cooperation - Another View

Smallest Cycle

Net Motion	Physical Result	Condition
Clockwise	polymer pushes wall	$\gamma > 1$
Counterclockwise	wall pushes polymer	$\gamma < 1$
None	balance	$\gamma = 1$

$$\gamma = \frac{\beta_w \alpha_p^2}{\alpha_w \beta_p^2}$$

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research Fixed Wall

Moving Wall Many Polymers

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで
Polymer Cooperation - Another View

Smallest Cycle

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research Fixed Wall Moving Wall Many Polymers

$$\log \gamma = \log \frac{\beta_w \alpha_p^2}{\alpha_w \beta_p^2} = \log \left(\frac{\alpha_p}{\beta_p}\right)^2 - \log \frac{\alpha_w}{\beta_w}$$
$$= 2\log \frac{\alpha_p}{\beta_p} - \log \frac{\alpha_w}{\beta_w}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Polymer Cooperation - Another View

Smallest Cycle - Force Connection

Net Motion	Physical Result	Condition
Clockwise	polymer pushes wall	$\log\gamma > 0$
Counterclockwise	wall pushes polymer	$\log\gamma < 0$
None	balance	$\log\gamma=0$

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research Fixed Wall

Moving Wall Many Polymers

$$\frac{k_B T}{\Delta x} \log \gamma = \frac{k_B T}{\Delta x} \left(2 \log \frac{\alpha_p}{\beta_p} - \log \frac{\alpha_w}{\beta_w} \right)$$

Net Force = Force of 2 Polymers – Force of Wall

The End

Questions?

Polymer Growth Simulation

Christine Lind

Introduction

Mathematical Model & Simulations

Current Research Fixed Wall Moving Wall Many Polymers

・ロト・日本・日本・日本・日本・日本